The FELIX SDN Experimental Facility

U. Toseef™, K. Pentikousis™

, C. Fernandez!, C. Bermudof, G. Carrozzo*, R. Monno*, B. Belter?,

K. Dombek$, L. Ogrodowczyk§, T. Kudoh¥, A. Takefusa¥, J. Hagaﬂ, J. Tanakall
*EICT, 'i2CAT, INXW, $§PSNC, YAIST, IKDDI
Corresponding author: [umar.toseef] @eict.de

Abstract—The development of test environment closet possible
to the real world scenario is becoming a fundamental requirement
in designing innovative network applications. This environment
must be fully configurable and reliable enough to provide the
similar results in multiple experiment runs. The federation of
the existing Future Internet (FI) testbeds is an initiative to fulfill
these strict requirements. The FELIX project aims to define and
deploy a control and monitoring framework which allows the
experimenters to execute their network services in a distributed
environment spread across two continents, i.e. Europe and Asia.
This paper describes the architecture of the software components
developed to manage heterogeneous resources that constitute
the FELIX infrastructure, i.e computing, SDN and transport
resources. Due to a modular nature of this architecture, the
article introduces the components with particular emphasis to the
provided functionalities, the exported interfaces, the dependencies
and the relationship between the internal building blocks. Some
details of the implementation choices and the workflow to realize
the user requests are also presented.

I. INTRODUCTION

In recent years, several projects in Europe, Asia and the US
have made significant effort on creating experimental research
infrastructures that are reusable and can incorporate the latest
emerging network technologies. As a result, a number of SDN
test-beds are being developed under the Future Internet (FI)
initiative. An open federation of large-scale heterogeneous
test-beds is a non-trivial task, requiring specialized design of
system architecture and framework. Taking on this challenge,
the FELIX project aims to facilitate the federation [1] and
integration of different network and computing resources re-
siding in a multi-domain heterogeneous environment across
two continents. The FELIX architecture [2] advances the state
of the art designs of the SDN test-beds developed in relevant
FI research projects thereby providing a working approach for
large-scale heterogeneous distributed systems and federations.

The architecture of the FELIX test-bed, discussed thor-
oughly in [2], is depicted in Figure 5. It is composed of various
modules that implement the functionalities like, resource or-
chestration, domain resource management, monitoring, authen-
tication (authN), authorization (authZ), and user access. The
Resource Orchestrator ("RO)’ is responsible for orchestrating
the end-to-end network service and resources reservation in the
entire infrastructure, as well as delegating end-to-end resource
and service provisioning in a technology-agnostic way. An
RO usually connects to multiple Resource Managers (RMs),
which control and manage different kinds of technological
resources in a similar way to the Component Managers of
SFA [3]. FELIX supports on-demand connectivity between the
geographically dispersed federating test-beds, which is realized
through the Transit Network RM (TNRM) and Stitching
Entity RM (SERM). They are capable of providing required
connection through the transit network domains and manage

the physical devices by using frame, packet, or circuit switch-
ing technologies; whilst able to support different protocols.
The Software Defined Networking RM (SDNRM) manages
the user traffic environment and the network infrastructure,
composed of SDN-enabled devices, by updating the flow tables
of the physical devices. The Computing RM (CRM) is re-
sponsible for setting up and configuring computing resources,
e.g., creating new virtual machine instances, configuring net-
work interfaces, etc. Similarly, other essential functionalities
are realized dedicated modules such as, the Authentication,
Authorization and Accounting (AAA) to control user access
and the Monitoring System (MS) to retrieve, aggregate and
store metering information from networking and computing
resources.

t ¢

e Lo [[o
t s

) (o]

Fig. 1.

Architecture of a FELIX test-bed

The User Portal is the Expedient [4] based user-agent
that offers an intuitive access to the life-cycle management
of experiments for experimenters as well as facilitates general
management operations for the administrators. To do this, the
User Portal communicates with the underlying modules of the
FELIX architecture to use a subset of their functionalities to
enable experimenters to list the available resources, allocate or
provision them, perform operational actions, and release them
when no longer needed. On the other hand, the administrators
may configure and manage resources, define different types
of policies, grant or revoke resource requests and monitor
different sets of resources, etc. In addition to User Portal,
experimenters can also get access to FELIX test-bed using
GENI (www.geni.net) compliant user-agents like OMNI [5]
and jFed (jfed.iminds.be).

FELIX uses a combination of recursive and hierarchical
configurations for orchestration, request delegation and inter-
domain dependency management. The RO entities that are
responsible for the synchronization of resources available in
particular administrative domains interact with each other via
the Master RO (MRO). FELIX has deployed two MROs; one
in Europe that interconnects four test-beds in the region, and
the other in Japan that links two federating test-beds in the
country. An MRO not only performs the inter test-bed resource
orchestration but also serves as a trust anchor to facilitate
authN and authZ procedures in the federated facilities.

The rest of the paper provides an implementation level
detail of the above architectural components and also describes
a use-case realized using the federated test-beds of FELIX.

II. IMPLEMENTATION
A. Resource Orchestrator (RO)

The Resource Orchestrator (RO) is a software entity in
charge of planning and provisioning the heterogeneous re-
sources of the FELIX Control Framework. It covers different
functionalities such as, mediation between the experimenter
and the Resource Managers (RM), enforcement of the proper
work-flow for the resource reservation of the end-to-end ser-
vices, maintenance of a high-level and cross-islands topol-
ogy view and providing aggregated information regarding the
status of the physical infrastructure (i.e. servers, switches,
devices, etc..) and virtual resources. For these purposes, the
RO contacts different RMs through a well-known interface
(GENIv3), widely adopted for test-bed federation and therefore
implemented in the RO and RMs. Basically, it consists of
an XML-RPC with a small number of methods that expect
a standardized model, called RSpec, and a subset of options
to better define the expected behavior.

The RO is developed as an event-based application com-
posed of a set of logically interconnected modules and li-
braries. Its architecture is composed of three main layers: the
North-bound Interfaces, the Core Components and the Plug-
ins, as shown in Figure 2.

User Applications

FELIX GUI OMNI Client Config

GENIVS API \ custom API

GENIv3 Config North-bound Interfaces RO
Handler Handler

Internal APl

Events Configuration] Core Components

Dispatcher [ELET:

Resource

"-‘““\‘
e

Remote RO Plugins
plugin plugin plugin plugin plugin

CRM ‘ SDNRM SERM TNRM MS

plugin

| cennsar | 1 custom API

Resource Managers
CRM SDNRM SERM

Fig. 2. RO design model

The top layer (North-bound Interfaces) contains the com-
ponents that interact with the GENIv3 interface. Those compo-
nents provide methods for the management of resources, such
as allocation, provisioning and release; and a custom API that
allows the configuration of the internal components. Once the

experimenter issues a request, the GENIv3 Handler delivers
it to the GENIv3 Delegate, where the required operations are
performed. Once completed, the handler formats the response
with the appropriate signature. On the other hand, the Config
Handler manages the configuration messages and invokes the
Configuration Manager with the incoming parameters.

The middle layer (Core Components) contains the modules
that perform the main operations, e.g., managing the user
requests, discovering the physical topology and generating
events for the resources realignment. The GENIv3 Dele-
gate executes the GENIv3 methods retrieving data from the
database, calling the RM plug-ins and aggregating the results.
The Events Dispatcher collects the events generated by the
other components and then schedules the execution through the
dedicated plug-in. The Configuration Manager configures the
internal components and (just in case) stores the data into the
database, e.g. intra-island RMs configuration details, etc. The
DB Manager provides a wrapper to the MongoDB API and
introduces proper filters for the FELIX resources.

The bottom layer (Plug-ins) is composed of plug-ins, each
of which contact a corresponding RM via a GENIv3 APIL
The univocal correspondence between plug-ins and RM can
be observed in the figure above. The communication to the
MS plug-in differs from other RMs, as the interfaces and
workflows change. In this case, the RO stores information
of the infrastructure and slice information, obtained either via
user requests through its northbound interface or via calls to
the RM through its southbound interfaces. Such information
is posteriorly sent to the Monitoring System. In this manner,
the Monitoring System is able to update the physical or virtual
topology of the underlying resources. Finally, the RO is able
to act as a Master Resource Orchestrator (MRO) by using the
Remote RO plug-in, which interacts with another Remote RO,
effectively implement the top-down hierarchical management
approach required by the FELIX architecture.

B. Transit Network RM (TNRM)

The Transit Network Resource Manager is the module
responsible for the inter-domain networking connectivity. The
main function of the TNRM is for network provisioning
between SDN slices and Network Services Interface (NSI
CSv2 [6]) domains, by acting as a proxy between the RO and
NSI CSv2 networks. Specifically, the TN-RM is responsible
for: 1) integrating with a different L1/L2 technologies in
different network domains, 2) triggering connection operations
on southbound interfaces, and 3) communication with its RO,
to receive requests and to notify RO about resource status,
success or failure events.

The prototype presented here is based on the concepts of
GENI architecture and the OFELIA [7] Aggregate Managers
and offers similar northbound APIs as other FELIX manager
modules, i.e. GENIv3 API, for management communication
consistency. It is controlled by Resource Orchestrator (RO),
which orchestrates different types of Resource Managers (RM)
in the island in a many-to-one relationship. Both eiSoil
(github.com/EICT/eiSoil/wiki) and NSI CSv2 were leveraged
for this effort. The eiSoil library provides the necessary “glue”
between communication handlers and management logic as
well as facilitates common tasks in RM development, which
reduces duplication of work. The Java based NSI CSv2 plug-in
is implemented to manage NSI CSv2 [8] Service Termination
Points (STPs).

(Python RPC

GENIv3 (with GENI

RPC [RSpec)

proxy.py
TNRM topology config

SimpleXMLRPCServer vendor/config.py

vendor/nsi2interface.py

eiSoil server.

Convert FELIX to NSIv2
src/main.py i

(JAVA method call D

with S| parameters)
NSiv2

Requesting Agent Interface
NSi2interface.java

NSI messages

vendor/
tnrm_delegate.py

I
: eiSoil

Fig. 3. Diagram of the 5 processes needed to communicate between the
client and the NSI domain, via the TNRM.

Semantically, the TNRM maps and translates the GENI
v3 state machine to the NSI CSv2 state machine. The five
general processes that are executed between the Client and
NSI CSv2 domain are shown in Figure 3. In Step 1, the
user makes a request for resources through a client that is
passed on to the MRO/RO. The resources are described with
GENI v3 RSpec XML documents [9]: Advertisement (presents
what resources are available), Request (specifies the resources
to be used by the client), and Manifest (shows the status
of resources). In Step 2, the client obtains credentials from
the Clearing House (CH) granting permission for the user
request. In Step 3, eiSoil calls tnrm_delegate.py to implement
the GENIv3DelegateBase. The tnrm_delegate.py in turn calls
proxy.py, which is the front end of the SimpleXMLRPCServer
to communicate with the NSI CSv2 NRM or AG. This is
done by calling nsiZinterface.py to invoke a Jython call to
NSI2Interface.java. This Jython step is necessary in order to
translate the Python calls of eiSoil to the Java calls in the
NSI CSv2 agents. Lastly, in Step 5, NSI2Interface.java calls
the NSI CSv2 Requester to connect to NSI CSv2 provider
(AG, NRM, etc.) by NSI CSv2 protocol using a CXF web
service. It is important to note that Step 4 also requires network
topology information. This is obtained by having proxy.py call
a config.py script that reads a configuration file (config.xml)
defined at a TN terminal point, which contains node, interface,
and NSI CSv2 STP information. It is important to note that in
order to communicate between the NSI CSv2 Java calls and the
eiSoil Python calls, a third language Jython was implemented.
This added level of complexity can be extended to make
the TNRM more flexible, giving it the ability to meet the
requirements of any network domain.

C. Stitching Entity RM (SERM)

Stitching Entity Resource Manager interconnects the exter-
nal connection points with the local SDN island by the switch-
ing rules configuration on the switching device (Stitching
Entity). In order to make its architecture design consistent with
other FELIX modules, the common part (Delegate, Parsers,
Formatters) is based on the RO module implementation.
Moreover it offers northbound APIs similar to other FELIX
manager modules, i.e. the GENIv3. The SERM allows an
experimenter to request, update and delete stitching resources
through switching rules. This module can also act as a proxy
between an RO and the stitching device. It receives requests
from the RO, checks the availability of switching hardware
and performs requested configuration. The SERM is also re-
sponsible for triggering the tear-down of expired reservations.

Figure 4 presents the SERM components and their inter-
connections. SERM configuration file is a file that specifies

x GENIv3 Messages
GENIV3 API
HTTPS + XML-RPC

I

Configuration GENIv3 Delegate

Parser
Parser | Formatter \

Reservation &
Calendar
Manager

SE-RM's
resource —>
configuration

Resource
Controller

[«— Scheduler

Database: B

- Resources
- Reservations
- Jobs

Hardware specific management implementation
(e.g. OpenFlow manager)

[
Stitching Entity
(e.g. programable switch, OpenFlow Controller)

Fig. 4. Stitching Entity Resource Manager components

which ports on the switching hardware take part in the FE-
LIX test-bed (NSI, STPs and static links). Some additional
parameters can also be specified like VLAN tagging options
or FELIX-specified identifiers. The Configuration parser
extracts the initial configuration, then checks if change could
interrupt the ongoing reservations and transforms all data
according to data template stored in the SERM Database.
The GENIv3 Delegate (with Parser and Formatter): allows
aggregates advertise and allocate resources to slices in the form
of slivers. This component is also responsible for parsing.
The Resource Controller gets the requests for deploying a
connection between the ports (switching rule), checks their
feasibility (e.g., through checking available port and/or VLAN
in configured range) and triggers them by translating real ports
values through the hardware-specific management implemen-
tation. The Reservation & Calendar Manager is responsible
for handling RSpec request in reservation context and stores
all needed information in dedicated data model. Additionally
it also works as calendar for managed resources. Moreover
this component takes part in releasing resources process. The
Database stores the status of the stitching resources like
ports and associated VLANs. It also stores the on-going
reservation with the deployment status and keeps scheduled
timeout events. Finally, it stores information about resources to
be released when reservation time expires. The Hardware spe-
cific management implementation is a pluggable component
that implements management features of a specific hardware
and management interface, e.g. an SSH client that invokes the
CLI commands on the remote console or the OpenFlow client

app.

D. Compute RM (CRM)

The Computing Resource Manager module allows the
experimenter to provision and manage Virtual Machines (VMs)
on a number of physical servers. The CRM is based on
the Virtualisation Technology Aggregate Manager (VTAM) of
the OFELIA Control Framework (fp7-ofelia.github.io/ocf). As
with other Resource Managers in FELIX, the management and
provision through CRM is possible thanks to a well-known
interface (GENIv3) and a custom data model (RSpec) filled up
with the requested data. The GENIv3 interface has been widely

adopted for test-bed federation. Figure 5 shows a detailed
schema of the CRM architecture.

An experimenter’s request arrives from one of the XML-
RPC APIs (either GENIv3 API or SFA (GENIv2) API
[10]) or from the OCF’s Graphical User Interface (GUI),
which communicates with the custom OFELIA API. All APIs
are located in the top layer (Northbound APls). After the
experimenter’s credentials are properly verified in the upper
layers, its request traverses the core components located in the
layers below.

Il GENIv3 APl [[SEA API I [OFELLA APl | Northbound APIs ‘
Core components
Dispatcher > XML
Parser/Crafter

[Gul | [XMLRPC | <—P| Policy Engine)d——r Policies|

N\

. q——>-| MAC Allocator
Hypervisor
Driver Lo,
IP Allocator -VMs, MACs, [Ps, Ranges

l - Provisioning, Monitoring

Database:
- Server, Project, Slices

Monitoring

| [SIMLRPC APT] Virtualisation Agent

Fig. 5. Components of the FELIX C-RM

The middle layer (Core components) addresses the request
by forwarding it to the appropriate components. Specifically,
the Dispatcher component intercepts and forwards the re-
quest to one or another component, as needed. Depending
on the entry point of the request, the Dispatcher component
processes the request sent through the GUI or the XMLRPC
subcomponents. First, the request is parsed and interpreted
in the XML parser. Then, the requirements (e.g. quantity
of memory, template name) are evaluated against the specific
policies of the domain, previously defined through the Policy
Engine. If the request complies with the local policies, the
request is processed and new data is computed (such as
the MAC and IP used for provisioning) through the MAC
Allocator and IP Allocator components. After this, the new
information is included in a properly formatted request and
forwarded to the XML-RPC API of the Agent, which is located
in every managed server. The information of the machine
recently reserved or provisioned is persisted in the internal
database. Finally, and in compliance with SFA [3], once the
VM is provisioned and running, the experimenter’s public key
is inserted to grant access to the VM.

The bottom layer (Virtualisation Agent) hosts the Agent
component and all its related components and utils. The
physical infrastructure may consist of any of two different
kinds of hypervisors: XEN, as per the original VTAM module,
or KVM, which was extended during the project. In both cases,
the agent receives an XML-formatted request, previously sent
from the Core layer, through its northbound API. The Agent
interprets the data from the request and communicates with
the custom drivers of the given Virtualisation Hypervisor in
order to create the VM. Once the process is finished and the
VM is created, the Agent sends a notification back to the other
subcomponents from the Core layer that are involved on the
process (i.e. the Expedient and the administrative panel of the
CRM’s GUI).

E. SDN RM (SDNRM)

The Software-Defined Networking Resource Manager al-
lows the experimenter to define a set of rules to forward pack-
ets through the OpenFlow switches, given a set of matches and
actions. For this, the SDNRM communicates with an external
specific-purpose controller, named FlowVisor, that slices the
traffic between different experiments. The SDNRM is based
on the OpenFlow Aggregate Manager (OFAM) of the OFELIA
Control Framework (fp7-ofelia.github.io/ocf). As with CRM,
the SDNRM uses the GENIv3 API for the definition of flows
and RSpec as custom data model. Figure 6 shows a detailed
schema of the SDNRM'’s architecture.

The experimenter’s request arrives from a pertinent XML-
RPC API (either GENIV3 API or SFA (GENIv2) API
[10]) or from the User Portal that communicates with the
custom OFELIA API. All APIs are located in the top layer
(Northbound APIs). After the experimenter’s credentials are
properly verified in the upper layers, its request traverses the
core components located in the layers below.

Il GENIv3 APL] [SEA API] [OFELLIA AFT | Nerthbound APIs |
Core components
Dispatcher — XML_
Parser/Crafter

[GUL _J[XMLRPC] la—»] Ezpiration Service |

AN

Monitoring Flow.\- 1sor Database:
Driver - Project, Slices, FlowSpaces
- DPIDs, Matches, Rules
| [SILRPC API] FlowVisor APT

Fig. 6. Components of the FELIX SDNRM

The middle layer (Core components) interprets the request
and operates on it as needed. Depending on the entry point of
the request, the Dispatcher component processes the request
sent through the GUI or the XMLRPC subcomponents. When
the request is received through the GUI, the set of matching
conditions (where VLANS are typically used) may need further
processing to define the specific VLANs from a given number
requested by the experimenter. This is done internally in this
layer by a subcomponent called VLAN Manager. This sub-
component is able to contact the different networks involved
to agree on a common subset of VLANs to be used. Such
operation could be useful in case no SERM was used for
stitching. The request, in any case, is parsed and interpreted in
the XML parser. Then, the request is set an expiration date
and stored in the internal database. The Expiration Service
performs a periodic review of the expiration date of the existing
requested flowspaces and deletes it if necessary. Before the
request is sent to the FlowVisor, the SDNRM performs an
internal verification of the matching conditions requested by
the experimenter, such as whether the VLANs requested are
available for new experiments. In this regard, the group’s
section of the request is analyzed to avoid collisions with set
of rules (flowspaces) already granted. After this process, the
request is ready to be transmitted to the FlowVisor through the
FlowVisor Driver.

The bottom layer (FlowVisor API) hosts the FlowVisor

Proxy. This proxy interacts directly against the XML-RPC
interface of the FlowVisor controller. Once the controller
finishes its internal operation, it sends a response back to the
intermediate layer, which subsequently notifies other subcom-
ponents involved in the process similar to CRM.

E Monitoring System (MS)

The Monitoring System (MS) is the module that monitors
slice(s) over the FELIX test-bed. The MS retrieves the mon-
itoring data of such resources with the help of the local RO
and provides it to the experimenters and island administrators.
The MS module is composed of three components as depicted
in Figure 7. 1) The Topology API manages the resource and
topology information with a proprietary API. This API accepts
the topology and resource information subject to monitoring
from the RO. It also provides the topology information to
external entities such as an experimenter’s client or monitoring
GUIL ii) The Monitoring Data Collector (MDC) gathers
the monitoring data from the physical resources using third-
party monitoring tools, e.g., perffSONAR (www.perfsonar.net)
and Zabbix (www.zabbix.com), which retrieve measurements
directly from the physical hardware. The MDC gathers such
data through the monitoring tools’ APIs and inserts it to
the Monitoring database. MS adopts a hierarchical structure
similar to the RO. Another feature of MDC is to forward data
from an MS to the Master MS (MMS), upper layer MS, or to
exchange information between different MMS. iii) Monitoring
API manages the monitoring data through a proprietary API.
This API accepts incoming monitoring data and stores it into
the Monitoring DB. The MDC stores the monitoring data
in MS Database through this interface. In addition, this API
provides interface to the external entities for requesting the
monitoring data.

MRS,
Monitoring
API

proprietary API

MS/MMS
prdprietary API

Monitoring Topology
API API

Monitoring Topology

MRS, DB DB
Monitoring
APl

proprietary API

Depend on the monitbring tool

.]

Fig. 7. Components of the MS

G. Authentication and Authorization

C-BAS (www.eict.de/c-bas) [11] employs X.509 certifi-
cates and SFA styled credentials to realize AAA services in
FELIX. The implementation of C-BAS was based on eiSoil
(github.com/EICT/eiSoil/wiki) to exploit its plugin capabilities
that enable importing the functionality from one plugin module
to another. C-BAS implements its functions through plug-ins
as shown in the UML package diagram (Figure 8). The fedrpc
plug-in module builds the service access interface of CBAS to

receive RPC calls of API methods. The ofed maps the access
API calls onto the internal clearinghouse methods and handles
authN/authZ through the use of geniutils plugin offered by
GENI. The fedtools comprised helper functions that include,
conformation checks of arguments passed in the RPC method
calls, verification of credentials and privileges, as well as,
management of supported member roles and their default set
of privileges.

1
|
—| 1«use» —|

I
1 N
«use» «usex» «usex» «use»
fedrpc | 7 ofed | 7 mongoDB — fedtools |~ geniutils
i
} ! «use» i ~ } ; /‘r\
T |11 «use» Lo
«use» | «use» Pl \} «use» | T
L ke |
I I | I I
I S —
«use» } i
oregistryrm osliceauthorityrm omemberauthorityrm !
«usen }
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i
Fig. 8. UML package diagram of C-BAS

The omemberauthorityrm implements the Member Au-
thority (MA) services to offer management of member infor-
mation and SSH keys. It maintains a database of registered
members’ credentials, certificates, and SSH keys. It also regis-
ters new members and issues certificates and credentials based
on their assigned roles. Moreover, it is consulted to update,
lookup, and delete the member information. In addition, it
maintains a Certificate Revocation List which contains invali-
dated member certificates. This list is periodically updated and
disseminated to other system entities involved in authN/au-
thZ. The osliceauthorityrm plug-in module realizes the Slice
Authority (SA) services that include management of projects,
slices, slivers and user credentials for projects/slices. The slice
credential issued by SA asserts a user’s membership and
privileges for a slice and serves as means to authorize GAPI
[10] calls to RO/RMs. SA also facilitates the creation, update,
lookup, and removal of projects, slices and their memberships.

The oregistryrm implements Service Registry (SR) which
holds pointers for all C-BAS services (e.g., SA, MA) and
serves as a primary contact point for the test-bed. The in-
formation offered by SR is statically configured in C-BAS.
The mongodb realizes persistence for C-BAS by implementing
a lightweight layer over noSQL database to help execute
database queries like create, delete, update, and lookup of
entries in a collection.

C-BAS offers its services to the User Portal, TNRM, and
other user-agents like OMNI and jFed. The use of certificates
in C-BAS greatly simplifies the authN/authZ mechanisms
when it comes to federating FELIX test-beds, because all that
is required is to establish mutual trust among the test-beds
by marking their root certificates as trusted. This enables the
validation of certificates and credentials issued by one test-bed
at all other federating test-beds within FELIX.

III. USE CASE
High Quality Media Transmission over long-distance net-
works is one of the use cases proposed by FELIX [2] and
assesses the FELIX Control Framework for provisioning SDN
resources for experiments. The provision process involves
dynamically creating a virtual slice over the federated in-
frastructure of European and Japanese test-beds. The slice

allows to demonstrate the capabilities of the involved test-
beds and judge the test-bed fitness for long-distance, high-
quality media streaming. This is because the demands and
requirements for streaming technologies make them highly
sensitive testing engines to detect transmission problems. The
technology developed for this use case to automatically adjust
connection paths and parameters can be leveraged to detect
network failures and problems. The multimedia streaming
tool used in these experiments offers a number of quality
measurement capabilities for evaluation purposes. In this use
case, two studies were performed: i) examining long distance
network capabilities and evaluating user experience (QoE), and
ii) examining a new intelligent network application to control
high quality media streaming.

Scenario topology

. Experiment GUI
=
£
g —
o -
3 £ S
s SDN £=E
£ =
g Application w® 8
- a i
) - 8
g i 2 g
- o o
- 5 oo
o noa
| REST API | REST API £ E e
2 P w
Monitoring system SDN controller % 33
A g2
c 33
& =
(@]
=
-
(=]
p—— L
Sl
|
prayer REST APl UltraGrid -
Rate- streamer
limiter

Fig. 9. An overview of experiment and provisioned resources.

Figure 9 depicts some of the experiment configurations
and the employed infrastructure. The procedure to perform the
experiment is as follows. Two physical machines (media source
and consumer) are reserved on two different federated test-
beds and UltraGrid streaming software (www.ultragrid.cz) is
installed on both machines. Then a network connectivity is
dynamically established between the two machines. Instead
of following a direct path, traffic is deliberately routed via
other test-beds as shown in Figure 9 for evaluation purposes.
Finally, using the UltraGrid a high quality media transmission
is started at one end and visualized at the other end. During
the tests, the experimenter may monitor various performance
metrics of the network connections, e.g., bandwidth, round trip
time, correctly decoded video frame per second and lost video
frames due to reordering, jitter, excessive delay, etc.

These experiments provide information on the impact

of various network parameters on the transmission quality.
Specifically, 1) it checks the boundary condition of the network
capacity needed for transmission of the high quality media
(based on user QoE) and thus provides information about the
minimum bandwidth required for media delivery with satisfy-
ing quality, ii) it provides real time monitoring of the media
traffic to observe possible stream degradation due to traffic
congestion on the paths, and iii) it examines the behavior of the
smart network application for automatic network configuration
and adjustments during the degradation of parameters.

IV. CONCLUSIONS AND FUTURE WORK

Having completed the implementation of the FELIX archi-
tecture and the start of one use case to validate and test the
architecture, the next step is to perform the other five use cases
to further validate and test the resulting implementation. In
parallel, various features of the software stack will be refined
as necessary for each use case. The completed implementation
will facilitate the federation and integration of different net-
work and computing resources that are distributed in multiple
domains across different continents. Experimental users of
the testbed will be able to request, provision, manage and
monitor various resources to create a slice in a heterogeneous,
geographically distributed environment. This ability to dy-
namically create network slices using federated infrastructures
is expected to encourage closer and deeper collaboration in
FI research and development, especially between EU and
Japanese communities.

ACKNOWLEDGMENT
This work was conducted within the framework of the EU
FELIX projects, which are partially funded by the Commission
of the European Union.

REFERENCES

[11 G. Carrozzo, et al., “Large-scale SDN experiments in federated envi-
ronments,” in Proc. SACONET WOSDN, March 2014.

[2] C. Fernandez, et al., “Large-scale SDN experiments in federated envi-
ronments,” IJPEDS Volume 30, Issue 3, April 2015.

[3] L. Peterson, et al., “Slice-based Federation Architecture (SFA),” July
2014.

[4] J. Naous, et al., “Expedient: A centralized pluggable clearinghouse to
manage geni experiments,” Jan. 2010.

[S] “The Omni client,” http://trac.gpolab.bbn.com/gcf/wiki/Omni, June
2015.

[6] T. Kudoh, et al., “Network services interface: An interface for request-
ing dynamic inter-datacenter networks,” Optical Fiber Communication
Conference (OFC), Mar. 2013.

[71 M. Sune, et al., “Design and implementation of the OFELIA FP7
facility: The European OpenFlow testbed,” Computer Networks, 2014.

[8] G. Roberts, et al., “Network service framework v2.0,” Jun. 2014.

[9] “GENI v3 RSpec Schema,” http://groups.geni.net/geni/wiki/RSpecSchema3.

[10] “The GENI Aggregate Manager
http://groups.geni.net/geni/wiki/GAPI_AM_API, 2013.

[11] U. Toseef, et al., “Implementation of C-BAS: Certificate-based AAA
for SDN Experimental Facilities,” in Proc. IEEE NCCA, June 2015.

APL”

The scientific/academic work is financed from financial resources for science in the years 2013 - 2016 granted for the realization of the international project

co-financed by Polish Ministry of Science and Higher Education.

user
Tekst maszynowy
The scientific/academic work is financed from financial resources for science in the years 2013 - 2016 granted for the realization of the international project
co-financed by Polish Ministry of Science and Higher Education.

