
The glue for Aggregate Manager developers

AMsoil



researcher’s goal


2



experiment execution


3

CH Clearinghouse 

AM Aggregate Manager



test bed

• Clearinghouse manages 
certificates and credentials 

• The client (here: omni) 

assembles the request and 
sends it to the Aggregate 
Manager 

• Aggregate Manager 
manages, allocates and 
provisions resources


4



AMsoil?


5

Someone needs to 
implement this!



AMsoil?


6

“ AMsoil is a light-weight framework for 
creating Aggregate Managers in test beds.  

AMsoil is a pluggable system and provides 
the necessary glue between RPC-Handlers 
and Resource Managers . Also it provides 
helpers for common tasks in AM 
development.



motivation


7

Utilities

RPC API
XML RPC

Resource Mgmt

This is why 
you write an AM. 

The rest is just annoying.

AM development  
without AMsoil



motivation

Extend AMsoil

Learn AMsoil

Resource Mgmt

AM development  
with AMsoil


8



how to write an AM


9

• Setup a little test bed 
• Install a Clearinghouse 

• Install a client 

• Install AMsoil 

• Understand AMsoil 

• Start hacking...



need to know


10

• how a GENI testbed works 

• how plugins work 

• what plugins you need to develop 

• what else AMsoil supports



what now?

finish this presentation, 

clone the repository ⎋ https://github.com/fp7-ofelia/AMsoil.git 

then read ⎋ https://github.com/fp7-ofelia/AMsoil/wiki/Installation


11

https://github.com/fp7-ofelia/AMsoil.git
https://github.com/fp7-ofelia/AMsoil/wiki/Installation


GENI?

AMsoil managers are used in a GENI-like test bed. 

Let’s understand how GENI works.


12



names in GENI
• Experimenter  

A human user who uses a 
client to manage resources 
via an AM. 

• Sliver 
A physical or virtual resource. 
It is the smallest entity which 
can be addressed by an AM 
(e.g. an IP address, a virtual machine, a FlowSpace). 

• Slice 
A collection of slivers.


13⎋ GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI


communication

• The Clearinghouse provides 
services to know who you are 
and  what you may do. 
(we don’t care, just use it) 

• The client speaks the GENI 
AM API to the AM. 
(we care, because we implement it)


14⎋ GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI


what can the API do?


15⎋ GENI

GetVersion Get info about the AM’s

ListResources Info what the AM has to offer

Describe Info for a sliver

Allocate Reserve a slice/sliver for a short time

Renew Extend the usage of a slice/sliver

Provision Provision a reservation for a longer time

Status Get the status of a sliver

PerformOperationalAction Change the operational state of a sliver

Delete Remove a slice/sliver

Shutdown Emergency stop a slice

https://github.com/fp7-ofelia/AMsoil/wiki/GENI


allocate and provision?


16⎋ GENI

allocated only for a short time resources are only booked not provisioned 
provisioned the slice/sliver actually takes up resources (is actually usable)

https://github.com/fp7-ofelia/AMsoil/wiki/GENI


typical experiment


17

Imagine a restaurant reservation. 

• ListResources  
Call the restaurant to ask what tables are available. 

• Allocate 
Call to tell which table you want (they will only hold the table for 2 hours). 

• Provision 
Come and use at the table (this may take 5 hours).

⎋ GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI


how do say what I want?
The resources are described with an 
XML document called RSpec. 

There are three RSpec types: 

• Advertisement (short: ads)  

Announces which resources/slivers are 
available. 

• Request 
Specifies the wishes of the experimenter 

• Manifest 
Shows the status of a sliver  


18⎋ GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI


AM… what now?

Let’s look on AMsoil and see what it can do.


19



a broad look


20

  |-- admin                  !
  |-- deploy                 !
  |   `-- trusted             !
  |-- doc                       Documentation 
  |   |-- img                  
  |   `-- wiki                 
  |-- log                       AMsoil's log 
  |-- src!
  |   |-- amsoil                AMsoil's core implementation 
  |   |   `-- core!
  |   |-- vendor                Repository for (core) plugins maintained by AMsoil 
  |   |   `-- ...!
  |   `-- plugins               Plugins to be loaded when bootstrapping AMsoil 
  |       `-- ...  !
  `-- test                    

AMsoil’s directory structure

! development

https://github.com/fp7-ofelia/AMsoil/wiki/Development


where to put plugins?


21

  |-- src!
  |   |-- amsoil  
  |   |   `-- core!
  |   |-- vendor 
  |   |   `-- ...!
  |   `-- plugins 
  |       `-- ...  !
  `-- test                    

! plugins

create symlinks to 
vendor plugins

contains plugins 
maintained by AMsoil

create your plugin 
code here

https://github.com/fp7-ofelia/AMsoil/wiki/Plugins


why plugins?


22

• Selection  
An administrator can add/remove plugins/functionality. 

• Exchangeability  
The interface remains, but the implementation be changed. 

• Clarity 
Provide a set of services and hide the details behind. 

• Encapsulation  
Protect implementations from other developers.

⎋ plugin

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin


register and use plugins


23⎋ plugin

[plugin A] import amsoil.core.pluginmanager as pm!
[plugin A] pm.registerService('myservice', serviceObject)!

[plugin B] service = pm.getService('worker')!
[plugin B] service.do_something(123)

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin


what can be a service?


24

short version 
everything which can be referenced in Python 

!

!

long version 
ints, strings, lists, dicts, objects, classes, packages

⎋ plugin

yes even 
packages!

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin


under the hood


25⎋ plugin

describes 
services & dependencies

performs 
initialization & registration

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin


implement a plugin


26⎋ plugin

• create a new folder in plugins 

• create the manifest.json 

• create the plugin.py 
• write a setup() method 

• register your services

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin


manifest.json

plugin.py

implement a plugin


27⎋ plugin

 {!
    "name"         : "My Plugin Name",!
    "author"       : "Tom Rothe",!
    "author-email" : "tom.rothe@eict.de",!
    "version"      : 1,!
    "implements"   : ["myservice", "myclass", "mypackage"], # you’ll register these services!
    "loads-after"  : ["somedependency"],            # dependency needs to be loaded before the setup method!
    "requires"     : []                             # dependency can be loaded after the setup method!
  }

 # ...imports...!
  def setup():!
      # register a service!
      pm.registerService('myclass', ServiceClass)!
      pm.registerService('myinstance', SingleClass() )!
      pm.registerService('mypackage', my.python.package)

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin


@serviceinterface


28

The methods and attributes which can should be used are 
marked the annotation @serviceinterface.

implementation
  from amsoil.core import serviceinterface!
!
  class MyService(object):!
    @serviceinterface!
    def do_something(self, param):      # can be used by the service user!
      pass!
    def do_more(self, param):           # not part of the service contract, NOT to be used!
      pass

⎋ plugin

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin


DOs and DONTs


29⎋ plugin

• If you have plugin-specific exceptions, 
create a package with all exceptions and register the 
package as a service. 

• Separate a plugin into multiple plugins if this improves  
re-usability. 

• Never import another plugin directly, always go via the 
pluginmanager via pm.getService().

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin


incoming missile

Let’s find out how to react to RPC requests.


30



getting the requests
• RPC Handler 

Retrieves the XML-RPC request, 
does some magic and passes the 
request on to the delegate. 

• Delegate 
Translates the GENI request into a 
language the Resource Manager 
can understand 

• Resource Manager (short: RM) 

Handles the actual allocation of 
the resources. 
 


31⎋ GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI


why RM and Delegate?


32

“ We need to decouple the RPC API from the 
resource management logic. 

This enables AMsoil-based AMs to 
implement multiple APIs (e.g. GENI, SFA, OFELIA APIs) 
without having to re-write everything.

⎋ GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI


interfaces


33

• Delegate 
Should derive from DelegateBase and overwrite the 
methods prescribed (e.g. list_resources, allocate, ...). 

• Resource Manager 
You make up the interface! 
The methods, attributes, parameters are domain-specific 
and depend on the resource type being handled.  
 

⎋ GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI


a new plugin is born


34

Create new plugins which handle the incoming requests from 
the client and do the actual resource management.

YourDelegate 

✓New folder for plugin 

✓manifest.json 

✓plugin.py 

✓ a delegate object

YourResourceManager 

✓New folder for plugin 

✓manifest.json 

✓plugin.py 

✓ a manager service



yourdelegate/plugin.py

YourDelegate


35

 # ...imports...!
GENIv3DelegateBase = pm.getService('geniv3delegatebase')!
geni_ex = pm.getService('geniv3exceptions')!
!
class MyDelegate(GENIv3DelegateBase): # derive from DelegateBase!
  # ...!
  def allocate(self, slice_urn, client_cert, credentials, rspec, end_time=None): # Overwrite DelegateBase method!
    # perform authentication and check the privileges!
    client_urn, client_uuid, client_email = self.auth(client_cert, credentials, slice_urn, ('createsliver',))!
    !
    rspec = self.lxml_parse_rspec(rspec) # call a helper method to parse the RSpec (incl. validation)!
    # ...interpret the RSpec XML...!
    try:!
      # call a resource manager and make the allocation happen!
      self._resource_manager.reserve_lease(id_from_rspec, slice_urn, client_uuid, client_email, end_time)!
    except myresource.MyResourceNotFound as e: # translate the resource manager exceptions to GENI exceptions!
      raise geni_ex.GENIv3SearchFailedError("The desired my_resource(s) could no be found.")!
    !
    return self.lxml_to_string("<xml>omitted</xml>"), {'status' : '...omitted...'} # return the required results!
!
def setup():!
  delegate = MyGENI3Delegate()!
  handler = pm.getService('geniv3handler')!
  handler.setDelegate(delegate)

⎋ GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI



36

needed knowledge



Delegate tasks


37

• Translate GENI API into Resource Manager(s) methods 

• Translate the RSpecs into Resource Manager values (and back). 

• Catch Resource Manager errors and re-throw as GENIv3.... 

• Translate the namespace from GENI to RM (e.g. URN ⬌ UUIDs). 

• Specify the needed privileges for authorization. 

• De-multiplex to dispatch to different Resource Managers 
(if you have multiple resource types in one AM).

yes there can only be 
one Delegate per AM.

⎋ GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI


RM tasks


38

• Instantiate resources 

• Manage persistence of reservations and resource state 

• Check policies 

• Avoid collisions of resources reservations / 
Manage availability 

• Throw domain-specific errors

⎋ GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI


more info

• Please see the ⎋ wiki for 
• Authentication / Authorization tools 

• RSpec generation assistance 

• More detailed description 

!

• Checkout the code and look at the DHCP AM example 
• plugin: dhcprm 

• plugin: dhcpgeni3 

• API description of geniv3rpc


39

https://github.com/fp7-ofelia/AMsoil/wiki/GENI


See what kind of bookings for resources are there and  
what is supported by AMsoil…

a table for two please


40



ways to schedule


41

There are two common types of scheduling 

⎋ schedule

best-effort pre-booking

experimenter process try and fail convenient planning

scheduling constraints current status only current and future

data to maintain past, current past, current, future

resource usage pattern typically sharing typically exclusive use

https://github.com/fp7-ofelia/AMsoil/wiki/Schedule


types of resources


42

There are two different cardinalities for resource types.

⎋ schedule

bounded unbounded

available resources limited unlimited

availability check boolean check
always available  

(possibly limited by the 
total load of booked resources)

resources identifiers well known, 
limited number

non-clashing, 
possibly infinite

https://github.com/fp7-ofelia/AMsoil/wiki/Schedule


schedule API


43⎋ schedule

import uuid!
import amsoil.core.pluginmanager as pm!
!
Schedule = pm.getService('schedule')!
ip_schedule = Schedule("IPLease", 100) # create a schedule for IPs!
vm_schedule = Schedule("VM", 100) # create a distinct schedule object for VMs!
!
# create bounded reservations with dedicated resource ids!
ip1 = ip_schedule.reserve(resource_id='192.168.1.1') # with mostly default values!
ip2 = ip_schedule.reserve(resource_id=‘192.168.1.2')!
# create a unbounded reservation!
vm1 = vm_schedule.reserve(resource_id=str(uuid.uuid4())) !
!
print len(ip_schedule.find()) # -> 2 (192.168.1.1, 192.168.1.2)!
print len(vm_schedule.find()) # -> 1 (ec1f33f0-8443-11e3-baa7-0800200c9a66)

We see different schedules, simple creation, bounded and unbounded. 

https://github.com/fp7-ofelia/AMsoil/wiki/Schedule


schedule API


44⎋ schedule

# complex creation for best effort (starts now)!
ip1 = ip_schedule.reserve(!
          resource_id='192.168.1.2',!
          resource_spec={"additional_information" : [1,2,3] },!
          slice_id='pizza',!
          user_id='tom',!
          start_time=datetime.utcnow(),!
          end_time=datetime.utcnow() + timedelta(0,0,10,0))!
!
# creation pre-booking with a default duration (from schedule constructor)!
ip2 = ip_schedule.reserve(!
          resource_id=‘192.168.1.3',!
          start_time=datetime.utcnow() + timedelta(10,0,0,0)) # start in 10 days

We see complex reservation pre-booking and best-effort. 

https://github.com/fp7-ofelia/AMsoil/wiki/Schedule


schedule API


45⎋ schedule

# complex creation for best effort (starts now)!
ip1 = ip_schedule.reserve(!
          resource_id='192.168.1.2',!
          resource_spec={ "additional_information" : [1,2,3] },!
          slice_id='pizza',!
          user_id='tom',!
          start_time=datetime.utcnow(),!
          end_time=datetime.utcnow() + timedelta(0,0,10,0))

What a pickle! Where can I put my resource specific information?

there!

You can add custom info to each reservation (any pickle-able object). 
If you can connect all info with reservations, no extra database needed.

https://github.com/fp7-ofelia/AMsoil/wiki/Schedule
http://docs.python.org/2/library/pickle.html


Let’s see how we can make our life even easier.

hands on tips


46



testing
✓ Fire up the Clearinghouse 

✓ Start the AMsoil server 

✓Run omni to send a request 
✓Check AMsoil’s logs


47⎋ development / omni examples

gcf#    python src/gcf-ch.py!

amsoil# python src/main.py!

amsoil# tail -f log/amsoil.log!

gcf#    python src/omni.py -o -a https://localhost:8001 -V 3 getversion

https://github.com/fp7-ofelia/AMsoil/wiki/Development


development mode

• Use the configuration tool to set flask.debug = True 
• Now the server reloads it’s files every time you change a file. 

!! Careful: The client’s certificate is now read from a pre-configured file. 

!

• For debugging 
• Throw exceptions or 

• Write to the log to see what’s going on.


48⎋ configuration⎋ GENI⎋ development

https://github.com/fp7-ofelia/AMsoil/wiki/Configuration
https://github.com/fp7-ofelia/AMsoil/wiki/GENI
https://github.com/fp7-ofelia/AMsoil/wiki/Development


logging


49

anywhere.py

import amsoil.core.log!
logger=amsoil.core.log.getLogger('pluginname')!
# logger is a decorated instance of Python's logging.Logger, so we only get one instance per name.!
  !
def somemethod():!
  logger.info("doing really cool stuff...")!
  logger.warn("Oh Oh...")!
  logger.error("Ba-Boooom!!!")!

⎋ logging

https://github.com/fp7-ofelia/AMsoil/wiki/Logging


configuration


50

anywhere.py

import amsoil.core.pluginmanager as pm!
config = pm.getService("config")      # get the service!
myvalue = config.get("mygroup.mykey") # retrieve a value!
config.set("mygroup.mykey", myvalue)  # set a value

plugin.py

import amsoil.core.pluginmanager as pm!
def setup():!
  config = pm.getService("config")  # get the service!
  config.install("mygroup.mykey", "somedefault", "Some super description.") # install a config item

Always install the config keys and defaults on the plugin's setup method  
(install will not re-create/overwrite existing entries).!

⎋ configuration

https://github.com/fp7-ofelia/AMsoil/wiki/Configuration


worker


51

anywhere.py

worker = pm.getService('worker') # get the service!
worker.add("myservice", "mymethod", "parameter1") # run as soon as possible!
worker.addAsReccurring("myservice", "mymethod", [1,2,3], 60) # run every minute!
worker.addAsScheduled("myservice", "mymethod", None, datetime.now() + timedelta(0, 60*60*2)) # run in 2 hours

fire up the server (needs reboot when changing code)
amsoil# python src/main.py --worker

The worker enables dispatching jobs to an external process  
(e.g. to perform longer tasks without blocking the client’s request response).

⎋ worker

https://github.com/fp7-ofelia/AMsoil/wiki/Worker


mailer


52

anywhere.py

MailerClass = pm.getService('mailer')!
mailer = MailerClass('root@example.org', 'mail.example.org')!
mailer.sendMail("to@example.org", "Some Subject", "Some Body.")

The mailer enables sending of plain-text mails.

⎋ mailer

! Delivering mail takes time. 

!! Do not block the client’s request handling too long. 

✓ If you want to send multiple mails, 
dispatch the delivery of mails to the worker.

https://github.com/fp7-ofelia/AMsoil/wiki/Mailer
https://github.com/fp7-ofelia/AMsoil/wiki/Worker


persistence


53

SQLAlchemy tutorial 

7900 words
Need to know 

926 words

⎋ persistence

vs.

https://github.com/fp7-ofelia/AMsoil/wiki/Persistence


you know it all


54

clone the repository 
⎋ https://github.com/fp7-ofelia/AMsoil.git 

then read the wiki 
⎋ https://github.com/fp7-ofelia/AMsoil/wiki

https://github.com/fp7-ofelia/AMsoil.git
https://github.com/fp7-ofelia/AMsoil/wiki

