AMsoil

The glue for Aggregate Manager developers

researcher’s goal

[~

\ :
\@ exretiment

. il ean

V,
@ eXPerInent

Pla .
L S<-'-u19 '\'C_A’ECU"","\
E’ L€ Sovrce PVAVWI;K l'hjr
+ comntipvradion

experiment execution

test bed

* Clearinghouse manages
certificates and credentials

e The client (here: omni)
assembles the request and
sends it to the Aggregate
Manager

* Aggregate Manager
manages, allocates and
Provisions resources

am]

a

L%////ZD
[omni |

Cleariny
hovs e

AMsoil?

Someone needs to
implement this!

AMsoil?

AMsoil is a light-weight framework for
creating Aggregate Managers in test beds.

AMsoil is a pluggable system and provides
the necessary glue between RPC-Handlers
and Resource Managers . Also it provides
helpers for common tasks in AM
development.

motivation

AM development
without AMsoll

Resource Mgmt

RPC AP]
XML RPC

This is why
you write an AM.
The rest is just annoying.

motivation

AM development
with AMsoll

Learn AMsoill

Resource Mgmt

how to write an AM

® Setup a little test bed D

* |nstall a Clearinghouse /\

* |nstall a client C(earl.hy
* |nstall AMsoil > hovs e
e Understand AMsoil /

%

e Start hacking... .
omhi

need to know

how a GENI testbed works
how plugins work
what plugins you need to develop

what else AMsoil supports

what now?

finish this presentation,

clone the repository O https://github.com/fp7-ofelia/AMsoil.git

then read DO https://github.com/fp7-ofelia/AMsoil/wiki/Installation

https://github.com/fp7-ofelia/AMsoil.git
https://github.com/fp7-ofelia/AMsoil/wiki/Installation

GENI?

AMsoil managers are used in a GENI-like test bed.

Let's understand how GENI works.

names in GENI

* Experimenter o,
A human user who uses a

client to manage resources
via an AM.

o Sliver
A physical or virtual resource.
't is the smallest entity which
can be addressed by an AM

(e.g. an IP address, a virtual machine, a FlowSpace).

e Slice
A collection of slivers.

O GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI

communication

e The Clearinghouse provides
services to know who you are Om h (
and what you may do.

(we don't care, just use it) GEIVI r\
* The client speaks the GENI AP' \)
AM API| to the AM.

(we care, because we implement it)

O GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI

what can the APl do?

GetVersion Get info about the AM’s
ListResources Info what the AM has to offer
Describe Info for a sliver

Allocate Reserve a slice/sliver for a short time
Renew Extend the usage of a slice/sliver
Provision Provision a reservation for a longer time
Status Get the status of a sliver
PerformOperationalAction Change the operational state of a sliver
Delete Remove a slice/sliver

Shutdown Emergency stop a slice

O GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI

allocate and provision?

;4((06 at€

/\) Provicien

allocated only for a short time resources are only booked not provisioned

provisioned the slice/sliver actually takes up resources (is actually usable)
O GENI' 16

https://github.com/fp7-ofelia/AMsoil/wiki/GENI

typical experiment

Imagine a restaurant reservation.

e | istResources
Call the restaurant to ask what tables are available.

e Allocate
Ca” to te” which table you WaNt (they will only hold the table for 2 hours).

®* Provision
Come and use at the table (this may take 5 hours).

O GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI

now do say what | want?

The resources are described with an
XML document called RSpec. <.~

-
There are three RSpec types:

e Advertisement (short: ads)
Announces which resources/slivers are

Specifies the wishes of the experimenter

available. T =
/
\QJ
® Request - 1 f
\J

e Manifest

Shows the status of a sliver
dyzm[‘fs.

=

O GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI

AM... what now?

Let's look on AMsoil and see what it can do.

a broad look

AMsoil's directory structure

-- doc

~

-- log

-= Src

—-- admin
-- deploy

trusted

img
wiki

amsoil

T —= core
vendor

~
-—

plugins

Documentation

AMsoil's log
AMsoil's core implementation
Repository for (core) plugins maintained by AMsoil

Plugins to be loaded when bootstrapping AMsoil

(2 development 20

https://github.com/fp7-ofelia/AMsoil/wiki/Development

where to put plugins?

-= SIXrcC

contains plugins
maintained by AMsoill

| -- amsoil

| “-- core

‘ - Vendor create your plugin
- code here
‘ —— e o o

-- plugins =

—— Y. e e create symlinks to
vendor plugins

/ | | | | | | |

-— test

https://github.com/fp7-ofelia/AMsoil/wiki/Plugins

whny plugins?

e Selection
An administrator can add/remove plugins/functionality.

e Exchangeability
The interface remains, but the implementation be changed.

o Clarity
Provide a set of services and hide the details behind.

* Encapsulation
Protect implementations from other developers.

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin

register and use plugins

‘P(uyih M Qq hager

(g (;_w'ce Ptyl?-/l—\’)

import amsoil.core.pluginmanager as pm
pm.registerService('myservice', serviceObject)

service = pm.getService('worker')
service.do something(123)

O plugin 23

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin

what can be a service?

short version
everything which can be referenced in Python

yes even
packages!

long version

ints, strings, lists, dicts, objects, classes, packages

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin

under the hood

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin

implement a plugin

create a new folder in plugins
create the manitest.json

create the plugin.py

e write a setup() method

register your services

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin

implement a plugin

manifest.json

{
"name" : "My Plugin Name",
"author" : "Tom Rothe",
"author-email" : "tom.rothe@eict.de",
"version" : 1,
"implements" : ["myservice", "myclass", "mypackage"], # you’ll register these services

"loads-after' ["somedependency"], # dependency needs to be loaded before the setup method

"requires" : [# dependency can be loaded after the setup method

plugin.py

...lmports...

setup():

register a service

pm.registerService('myclass', ServiceClass)
pm.registerService('myinstance', SingleClass())

pm.registerService('mypackage’', my.python.package)

O plugin

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin

@serviceinterface

The methods and attributes which can should be used are
marked the annotation @serviceinterface.

implementation

from amsoil.core import serviceinterface

class MyService(object):
@serviceinterface
def do_something(, param):
pass
def do_more(, param):
pass

O plugin

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin

DOs and DONTs

* |[f you have plugin-specific exceptions,
create a package with all exceptions and register the
package as a service.

e Separate a plugin into multiple plugins it this improves
re-usability.

e Never import another plugin directly, always go via the
pluginmanager via pm.getService().

https://github.com/fp7-ofelia/AMsoil/wiki/Plugin

incoming missile

Let's find out how to react to RPC requests.

getting the requests

 RPC Handler
Retrieves the XML-RPC request,
does some magic and passes the
request on to the delegate.

* Delegate
Translates the GENI request into a
language the Resource Manager
can understand

® Resource Manager (short: RM)
Handles the actual allocation of
the resources.

(30
_

lnq,ucS/'

(Ev! v3 KK
LI«H‘((C"

¥ delegades

—

O GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI

whny RM and Delegate?

We need to decouple the RPC API from the
resource management logic.

This enables AMsoil-based AMs to
implement multiple APIs (.g. GeNi, sFa, OFELIA APIs)
without having to re-write everything.

O GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI

interfaces

* Delegate
Should derive from DelegateBase and overwrite the
methods prescribed (e.g. list_resources, allocate, ...).

®* Resource Manager
You make up the interface!
The methods, attributes, parameters are domain-specific
and depend on the resource type being handled.

O GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI

a new plugin is born

Create new plugins which handle the incoming requests from
the client and do the actual resource management.

YourDelegate YourResourceManager

v New folder for plugin v New folder for plugin

v manitest.json v manitest.json

v plugin.py v plugin.py

v a delegate object v a manager service

YourDelegate

yourdelegate/plugin.py

...lmports...
GENIv3DelegateBase = pm.getService('geniv3delegatebase')
geni ex = pm.getService('geniv3exceptions')

class MyDelegate(GENIv3DelegateBase): # derive from DelegateBase
e
def allocate(self, slice urn, client cert, credentials, rspec, end time=None): # Overwrite DelegateBase method
perform authentication and check the privileges

client urn, client uuid, client email = self.auth(client cert, credentials, slice urn, ('createsliver',))

rspec = self.lxml parse rspec(rspec) # call a helper method to parse the RSpec (incl. validation)
...lnterpret the RSpec XML...
try:
call a resource manager and make the allocation happen
self. resource manager.reserve lease(id from rspec, slice urn, client uuid, client email, end time)
except myresource.MyResourceNotFound as e: # translate the resource manager exceptions to GENI exceptions

raise geni ex.GENIv3SearchFailedError("The desired my resource(s) could no be found.")
return self.lxml to string("<zxml>omitted</xml>"), {'status' : '...omitted...'} # return the required results

def setup():
delegate = MyGENI3Delegate()
handler = pm.getService('geniv3handler')
handler.setDelegate(delegate)

O GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI

needed knowledge

i o P

/g/o o=
kKNVvowSs USE OF
BOoTH

Delegate tasks

e Translate GENI APl into Resource Manager(s) methods

e Translate the RSpecs into Resource Manager values (and back).
e Catch Resource Manager errors and re-throw as GENIv3....

e Translate the namespace from GENI to RM (e.g. URN « UUIDs).

e Specify the needed privileges for authorization.

 De-multiplex to dispatch to different Resource Managers

(it you have multiple resource types in one AM).

yes there can only be
one Delegate per AM.

O GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI

RM tasks

Instantiate resources
Manage persistence of reservations and resource state
Check policies

Avoid collisions of resources reservations /
Manage availability

Throw domain-specitic errors

O GENI

https://github.com/fp7-ofelia/AMsoil/wiki/GENI

more info

o Please see the D wiki for

e Authentication / Authorization tools
* RSpec generation assistance

e More detailed description

e Checkout the code and look at the DHCP AM example

® plugin: dhcprm
® plugin: dhcpgeni3s

e APl description of geniv3rpc

https://github.com/fp7-ofelia/AMsoil/wiki/GENI

a table for two please

See what kind of bookings for resources are there and

what is supported by AMsoil...

ways to schedule

There are two common types of scheduling

best-effort

experimenter process try and fall
scheduling constraints current status only
data to maintain past, current

resource usage pattern typically sharing

pre-booking

convenient planning

current and future

past, current, future

typically exclusive use

O schedule

https://github.com/fp7-ofelia/AMsoil/wiki/Schedule

types of resources

There are two different cardinalities for resource types.

bounded unbounded

available resources limited unlimited

o always available
availability check boolean check (possibly limited by the
total load of booked resources)

well known, non-clashing,

resources identifiers limited number possibly infinite

O schedule

https://github.com/fp7-ofelia/AMsoil/wiki/Schedule

schedule AP

We see different schedules, simple creation, bounded and unbounded.

import uuid
import amsoil.core.pluginmanager as pm

Schedule = pm.getService('schedule')
ip schedule = Schedule("IPLease", 100) # create a schedule for IPs
vmmn_schedule = Schedule("VM", 100) # create a distinct schedule object for VMs

create bounded reservations with dedicated resource ids

ipl = ip schedule.reserve(resource id='192.168.1.1"') # with mostly default values
ip2 = ip schedule.reserve(resource id='192.168.1.2")

create a unbounded reservation

vinl = vm schedule.reserve(resource id=str(uuid.uuid4()))

print len(ip schedule.find()) # -> 2 (192.168.1.1, 192.168.1.2)
print len(vm schedule.find()) # -> 1 (eclf33f0-8443-11e3-baa7-0800200c9a66)

O schedule

https://github.com/fp7-ofelia/AMsoil/wiki/Schedule

schedule API

We see complex reservation pre-booking and best-effort.

complex creation for best effort (starts now)

ipl = ip schedule.reserve(
resource id='192.168.1.2",
resource spec={"additional information" : [1,2,3] },

slice id='pizza',

user id='tom',

start time=datetime.utcnow(),

end time=datetime.utcnow() + timedelta(0,0,10,0))

creation pre-booking with a default duration (from schedule constructor)
ip2 = ip schedule.reserve(
resource id=‘192.168.1.3"',
start time=datetime.utcnow() + timedelta(10,0,0,0)) # start in 10 days

O schedule

https://github.com/fp7-ofelia/AMsoil/wiki/Schedule

schedule API

What a pickle! Where can | put my resource specific information?

there!

resource spec={ "additional information" : [1,2,3] },

You can add custom info to each reservation (any pickle-able object).
If you can connect all info with reservations, no extra database needed.

O schedule

https://github.com/fp7-ofelia/AMsoil/wiki/Schedule
http://docs.python.org/2/library/pickle.html

nands on tips

L et's see how we can make our life even easier.

testing

v Fire up the Clearinghouse
v Start the AMsoil server

v Run omni to send a request
v Check AMsoil's logs

python src/gcf-ch.py
python src/main.py

tail -f log/amsoil.log

python src/omni.py -o -a https://localhost:8001 -V 3 getversion

O development / omni examples

https://github.com/fp7-ofelia/AMsoil/wiki/Development

development mode

e Use the configuration tool to set flask.debug = True

e Now the server reloads it's files every time you change a file.

Il Careful: The client’s certiticate is now read from a pre-configured file.

e For debugging

e Throw exceptions or

e \Write to the log to see what's going on.

O development © GENI O configuration

https://github.com/fp7-ofelia/AMsoil/wiki/Configuration
https://github.com/fp7-ofelia/AMsoil/wiki/GENI
https://github.com/fp7-ofelia/AMsoil/wiki/Development

logging

anywhere.py

import amsoil.core.log
logger=amsoil.core.log.getLogger(' 'pluginname')
logger is a decorated instance of Python's logging.Logger, so we only get one instance per name.

def somemethod():
logger.info("doing really cool stuff...")
logger.warn("Oh Oh...")
logger.error("Ba-Boooom!!!")

O loggin

https://github.com/fp7-ofelia/AMsoil/wiki/Logging

configuration

anywhere.py

import amsoil.core.pluginmanager as pm

config = pm.getService("config")

get the service

myvalue = config.get("mygroup.mykey") # retrieve a value

config.set("mygroup.mykey", myvalue)

plugin.py

import amsoil.core.pluginmanager as pm

def setup():
config = pm.getService("config")

config.install("mygroup.mykey",

set a value

get the service

"somedefault",

"Some super description.") # install a config item

Always install the config keys and defaults on the plugin's setup method

(install will not re-create/overwrite existing entries).

O configuration

https://github.com/fp7-ofelia/AMsoil/wiki/Configuration

worker

The worker enables dispatching jobs to an external process

(e.g. to perform longer tasks without blocking the client’s request response).

anywhere.py

worker = pm.getService('worker') # get the service
worker.add("myservice", "mymethod", "parameterl") # run as soon as possible
worker.addAsReccurring("'myservice", "mymethod", [1,2,3], 60) # run every minute

worker.addAsScheduled("myservice", "mymethod", None, datetime.now() + timedelta(0, 60*60%*2)) # run in 2 hours

fire up the server (needs reboot when changing code)

amsoil# python src/main.py --worker

O worker

https://github.com/fp7-ofelia/AMsoil/wiki/Worker

mailer

The mailer enables sending of plain-text mails.

anywhere.py

MailerClass = pm.getService('mailer')
mailer = MailerClass('root@example.org', 'mail.example.org')
mailer.sendMail("to@example.org", "Some Subject", "Some Body.")

| Delivering mail takes time.
Il Do not block the client’s request handling too long.

v If you want to send multiple mails,

dispatch the delivery of mails to the worker.

O mailer

https://github.com/fp7-ofelia/AMsoil/wiki/Mailer
https://github.com/fp7-ofelia/AMsoil/wiki/Worker

SQLAlchemy tutorial
7900 words

Need to know |

926 words

® S w O -

https://github.com/fp7-ofelia/AMsoil/wiki/Persistence

you know it all

clone the repository
O https://github.com/tp7-otelia/AMsoil.git

then read the wiki
O https://qgithub.com/fp7-ofelia/AMsoil/wiki

https://github.com/fp7-ofelia/AMsoil.git
https://github.com/fp7-ofelia/AMsoil/wiki

