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Abstract
The deliverable defines general architecture and funcƟonal blocks which provides a FELIX Federated Framework
for integraƟon of different network resources distributed in a mulƟ-domain heterogeneous environment. The
document focuses on all components and their funcƟonaliƟes, including aspects of resources management, con-
figuraƟon, monitoring and user access. The document also specifies mechanisms that are used to provide feder-
ated services. This deliverable is the basis for the work related to the implementaƟon of the FELIX Inter-Islands
ConnecƟvity Framework.
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ExecuƟve Summary
Deliverable D2.2 defines the control and management architecture for federated Future Internet testbeds. Al-
though architectural choices concern mainly a federaƟon of European and Japanese testbeds, and specifically
OFELIA and RISE, the project ambiƟons go far beyond, trying to propose a federaƟon framework to be well
adopted by other plaƞorms, not only located in Europe or Japan.

The deliverable challenges a number of quesƟons, which build together a set of components used to construct
the FELIX architecture:

• What are the system requirements for a federaƟon plaƞorm? This deliverable reports on further analysis
of the User Requirements previously idenƟfied and described in D2.1 [20], which have been translated into
System Requirements – consolidated and prioriƟzed FELIX framework requirements, which must be taken
into account while the defining the FELIX architecture.

• What are the exisƟng federaƟon frameworks and control/management tools to be adopted in FELIX? This
deliverable provides an analysis of exisƟng soluƟons, already deployed in Future Internet testbeds in Eu-
rope and Japan. It provides a survey of European and Japanese testbed architectures, with parƟcular focus
on federaƟon mechanisms to be re-used in FELIX.

• What are the key system components of the desired federaƟon plaƞorm? The deliverable introduces func-
Ɵonal decomposiƟon of the FELIX architecture. All components of the architecture and their expected
behaviour are described in detail, highlighƟng the funcƟonality of interfaces between external enƟƟes
and the system itself.

• How to integrate different resource types for creaƟng a slice out of federated resources? The deliverable
indicates several resource types which are crucial for creaƟon of inter-domainmulƟ-technology slices built
out of federated resources. It also explains how tomanage those resources and unite them into single slice
enƟty.

The deliverable presents all components, interface and protocols at a high level of abstracƟon. It states a
general view on architecture, building blocks, resource types and collaboraƟon of all system enƟƟes for slice
delivery, however it does not define the explicit way of soŌware development. This concept is introduced inten-
Ɵonally, giving a level of freedom to soŌware developers implemenƟng the FELIX architecture suited to a specific
tesƟng environment. The document is intended as a set of architectural guidelines for developers, rather than
the detailed soŌware design of the FELIX plaƞorm. In order to make the architecture applicable not only to FE-
LIX project, the document focuses on requirements, rather than on explicit protocols or interfaces to be used.
Despite the face that it contains some suggesƟons (e.g. usage of NSI CS standard or OpenFlow protocol for SDN
control), the readers of the document may use any other technologies, as long as they are in alignment with the
architecture requirements defined. The FELIX project teamwill make the final selecƟon of protocols and soŌware
tools during the implementaƟon phase, and will deploy the service prototype according to the specific needs and
environment, i.e. taking into account the FI experimental infrastructures which are part of the consorƟum.

This document defines the System Requirements, which are funcƟonal and non-funcƟonal requirements
idenƟfied by FELIX partners, needed to implement the framework and run the Use Cases defined in D2.1 deliv-
erable [20]. These requirements are used to define the three levels of FELIX framework management structure:
Resource Orchestrators (RO), Resource Managers (RM) and resources themselves. The ROs form a hierarchical
tree structure which allows informaƟon to propagate in an organized manner and locate resources in mulƟple
federated testbeds. The ROs at the very boƩom of the tree control RMs, which are responsible for the configu-
raƟon of resources in a single domain. Each RM is responsible for a different type of resource. The types are not
limited to, but include the following types defined within this document: Transit Network, SDN, and CompuƟng
Resources. This organized tree structure is called a FELIX Space and is dedicated to managing the infrastructure

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
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and configuring the user slices within it. When a slice is created, a user can control and access it via the User
Space, which consist of various tools provided either by a user or the FELIX project itself (e.g. a SDN Controller).
Through the analysis of exisƟng soluƟons, the use and selecƟon of exisƟng out-of-the-box tools and concepts
is proposed. This minimizes the implementaƟon work, and facilitates the re-use of already available products
and/or standards, while the emphasis in implementaƟon effort will be placed on integraƟon of federated re-
sources.

This document is addressed to network specialists, network architects and decision makers involved in the
construcƟon of SDN testbeds in different phases (from architectural design, through implementaƟon to opera-
Ɵon), as well as those soŌware developers implemenƟng specific features of control/management frameworks
for SDN testbeds.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
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1 IntroducƟon
The FELIX project aims at creaƟng a common framework in which users can request, monitor and manage a
slice provisioned over distributed and distant Future Internet experimental faciliƟes. This document specifies
the FELIX architecture, main funcƟonal blocks of the architecture, as well as providing a common background of
terminology to be used in all documents produced in the project.

In FELIX project deliverable D2.1 [20], six use cases have been idenƟfied, detailed and further grouped into
twomajor groups: Data Domain use cases and Infrastructure Domain use cases. These use cases have been iden-
Ɵfied with the primary objecƟve of moƟvaƟng concepts and innovaƟons expected through FELIX and to idenƟfy
and address exisƟng issues and barriers when federaƟng distributed, geographically distant testbed faciliƟes.

The FELIX Data Domain use cases mostly target the area of SDN and dynamic interconnecƟons via NSI. Data
caching, fast delivery, streaming and the related workflow management are key in this group of use-cases:

• Data on Demand – delivery of distributed data by seƫng data flows over the network

• Pre-processing and delivery of nearly real-Ɵme [satellite] data to geographically distant locaƟons (from EU
to JP and vice versa)

• High quality media transmission over long-distance networks

The FELIX Infrastructure Domain use cases focus more on the efficient use of federated and dispersed FI
resources (on different conƟnents), to migrate enƟre workloads (VMs and data) or virtual infrastructures in a
more efficient way (e.g. with energy saving targets) and enhanced features (e.g. data/service survivability in case
of disasters):

• Data mobility service by SDN technologies

• Follow-the-sun / follow-the-moon principles

• Disaster recovery by migraƟng IaaS to a remote data center

The six FELIX use cases have been further translated into a set of user requirements (UR) that describes the
expectaƟons from the FELIX system in terms of objecƟves, use-case environment, constraints and measures of
effecƟveness and suitability. This deliverable reports on further analysis of the previously idenƟfied user require-
ments and presents the refined list of system requirements (SR), consolidated and prioriƟzed FELIX framework
requirements, which must be taken into account while defining the FELIX architecture. System requirements,
which are idenƟfied and presented in details in this deliverable, build a foundaƟon for the technical analysis of
the system/plaƞorm to be designed and implemented in a distributed testbed environment spanning among
Europe and Japan.

This deliverable aƩempts to define a preliminary high-level FELIX architecture. The architectural work on
specific FELIX components have been preceded with a deep analysis of current architectures and exisƟng testbed
management/control frameworks running in Europe and Japan to re-use as much as possible and avoid re-
invenƟng already established and well working mechanisms and algorithms. Project partners agreed to restrict
the analysis to the OFELIA, FIBRE, Fed4FIRE and BonFIRE projects on the European side and the GridARS and
RISE projects on the Japanese side. The state of the art analysis focused, among the others, on the following
architectural components:

• General control frameworks

• Resource discovery, reservaƟon and provisioning mechanisms

• Experiment managers

• IdenƟty management tools

Project: FELIX (Grant Agr. No. 608638)
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• User interface tools

It should be noted that all the aforemenƟoned projects run their own complete stack to manage resources
in either distributed or centralized testbed environments. Each system component of the exisƟng frameworks
has been analysed, highlighƟng its usefulness for FELIX. The resulƟng FELIX architecture clearly marks the ex-
pected progress beyond state of the art, while a decision on which component from the exisƟng frameworks will
be re-used during the implementaƟon phase will depend on the final soŌware design, which will happen aŌer
compleƟon of this architectural framework.

FELIX aims to provide a framework for integraƟon of different network resources residing in a mulƟ-domain
heterogeneous environment. The resulƟng architecture should be flexible and scalable to assure a sufficient
level of interacƟon between various system components. In the FELIX project it is agreed to use a hierarchical
model for inter-domain dependency management, with orchestrator enƟƟes responsible for synchronizaƟon of
resources available in parƟcular administraƟve domains.

The architecture can be seen as a combinaƟon of two spaces (see Figure 1.1):

• FELIX Space consists of management and control tools to coordinate processes of creaƟon of a virtual
environment in a heterogeneous, mulƟ-domain and geographically distant testbed. The components of
the FELIX spacewill operate in hierarchicalmodel, to enable efficient informaƟonmanagement and sharing
across mulƟ-domain environment.

• User Space consists of any tool or applicaƟon a user wants to deploy to control his virtual network envi-
ronment or to execute a parƟcular operaƟon within it. The selecƟon of tools is completely dependent on
specific user requirements and is out of scope of the FELIX framework.

Figure 1.1: FELIX and User Spaces Architectural Concept

Both spaces play disƟnct roles in creaƟonandoperaƟonof each virtual network environment, which is created
by the FELIX Space upon a request from a user, and then managed by user tools in the USER Space.

In this architectural document, all components, interfaces and protocols are described at a high level of ab-
stracƟon. Consequently, the document provides a set of architectural guidelines for soŌware developers, while
eventual decisions on implementaƟon choices (e.g. specific technologies) to be used will be made while the
detailed soŌware architecture is being realized. The document is structured as follows:

Project: FELIX (Grant Agr. No. 608638)
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• System Requirements chapter contains an explanaƟon of funcƟonal and non-funcƟonal requirements that
must be fulfilled by the FELIX framework, in order to operate and allow to implement the Use Cases, as
defined in [20].

• RelatedWork and Testbed Analysis chapter contains a brief overview of FI architectures that we selected as
related to the FELIX work. The chapter also list tools and technologies which FELIX may potenƟally uƟlise
and also explain the advantage of new framework over the exisƟng ones. The more detailed FI testbed
descripƟons can be found in Appendix A.

• System Architecture chapter provides an overview of FELIX architecture details and components. This
chapter is divided into the following sub-chapters:

– Concept and DefiniƟons -- explains terminology and concepts used in this document, and consoli-
dates the preliminary terminology defined in [20].

– Architecture of the Components -- explains the FELIX and User Space components and their depen-
dencies, interacƟons, interfaces and responsibiliƟes.

• Conclusions and Summary chapter contains a summary of the FELIX architecture, conclusions and concepts
for further development.

Project: FELIX (Grant Agr. No. 608638)
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2 System Requirements
A virtual infrastructure or a slice, distributed over mulƟple regions and domains, enables large-scale data inten-
sive scienƟfic compuƟng, such as high energy physics, bioscience and geoscience, and highly available and per-
formance assured commercial services. Data intensive scienƟfic applicaƟons need to manage Peta-to-Exascale
data, produced by geographically distributed high performance experimental instruments and sensors, provided
by several organizaƟons, and process them effecƟvely. In addiƟon, commercial service applicaƟons require stable
distributed compuƟng infrastructure because they have to provide naƟonal and worldwide users with a quality-
assured service, and prepare for recovery and conƟnuaƟon of the services aŌer a natural or human-induced
disaster.

Crucial issues to provide a slice in a federated testbed environment are as follows:

• Resource OrchestraƟon -- OrchestraƟon of various virtualised resources, not only computers, but also net-
work and storage, provided from mulƟple domains, is required.

• Island Resource Management -- CoordinaƟon of various resources provided by heterogeneous resource
management systems within an Island is required.

• Resource AllocaƟon Planning -- It is important to create a suitable resource allocaƟon plan for both comput-
ing resources and network resources. This should take into consideraƟon user and resource administrator
issues, such as cost, energy consumpƟon and load balancing.

• Provisioning -- It is important to provide applicaƟons with a virtual flat environment, just like a dedicated
cluster, using dynamic resource informaƟon, such as IP addresses.

• AAA (authenƟcaƟon, authorizaƟon and accounƟng) -- It is vital, that all acƟons are proven to be performed
by authorized actors -- and only by those authorized. This includes making sure the persons are who they
claim to be, ensuring people may perform the acƟons they are trying to and to record those acƟons.

• Monitoring -- It is difficult for each user tomonitor the usage of distributed and heterogeneous "virtual" re-
sources managed by mulƟple domains. Each domain has to provide monitoring informaƟon for resources
(which are virtual rather than physical) which are parts of a slice belonging to the user. Such monitoring
informaƟon from mulƟple domains has to be coordinated and provided to the user.

Recently, cloud compuƟng or IaaS (infrastructure as a service), in which a “slice” is constructed dynamically
according to a request, is coming into widespread use.

A slice is an infrastructure constructed on top of physical resources (such as computer and storage hardware)
using virtualisaƟon technologies. A user to whom a slice is provisioned can use it as if it was his own physical in-
frastructure. Using such dynamic slice, from the view point of a user, a required infrastructure (such as computers
and storages) is provisioned dynamically when it is needed. Users do not have to own their own resources, and
should pay the cost only when they use the resources. From the view point of resource providers, uƟlizaƟon of
the resources can be maximized, and the operaƟng cost can be minimized by having a large number of uniform
resources at one place. In addiƟon, the energy consumpƟon of a slice can be reduced by opƟmizing resource
usage. In exisƟng Cloud Management Systems (e.g. OpenStack, CloudStack), all the physical resources, which
are composed in one slice, belong to a single data center. Therefore, opƟmizaƟon (in terms of both performance
and energy cost) of resource uƟlizaƟon among mulƟple data centers is not possible.

Different services such as compuƟng and storage may be supplied by different providers. In such a case,
network bandwidth between data centers of the providers is important to achieve high performance and stable
service. By providing a wideband stable network between data centers, an inter-domain slice can be provisioned,
therefore being composed of resources delivered by mulƟple data centers.
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In an inter-domain slice, an inter-cloud network provided dynamically is connected to an intra-data center
network. Since there will be mulƟple tenants of cloud services in a data center, mulƟple virtual networks will be
formed inside of an intra-data center network. It is important that these virtual networks are properly connected
to inter-data center networks; consequently, inter-data center resource management becomes important, in-
deed a number of research results have been reported on this issue. A Discovery Service, which collects staƟc
resource informaƟon, a ResourceManagement Service, which schedules and co-allocates appropriate resources,
a Provisioning Service, which constructs a virtual infrastructure for the resources at a reserved Ɵme and a Mon-
itoring Service, which collects resource usage informaƟon of each user’s slice and provides it to the user are
required.

For all acƟons, the FELIX architecture and implementaƟon must make sure that all acƟons are performed by
authorized actors only. All enƟƟes with their respecƟve interfaces need to adopt a authenƟcaƟon and autho-
rizaƟon scheme. This scheme needs to ensure that the facility's enƟƟes, including their interconnecƟons, are
protected frommalicious aƩackers. Especially, the management interfaces need to be safeguarded with authen-
ƟcaƟon and authorizaƟon measures. Also, accounƟng is a vital part of security, because the logging of acƟons
can later not only be used to charge the perpetrator, but also to learn and guard for the future.

This chapter will present the FELIX framework system requirements (SR), which contributes to the proposed
architecture approach and fulfills theUser Requirements defined inD2.1 ExperimentUse Cases andRequirements
deliverable [20]. The SoŌware Requirements (SRs), in comparison to Use Cases and URs (User Requirements),
idenƟfy parƟcular features of the architecture and soŌware modules, creaƟng a list of requirements facilitaƟng
the validaƟon of the final FELIX product. SRs are more detailed, oŌen spliƫng single URs into several funcƟonal
requirements, realized by one or more dependent soŌwaremodules. The requirements presented in this secƟon
are grouped in three sets, depending on the assessment made by the FELIX partners on the importance of the
parƟcular requirement for the implementaƟon of a use case. This importance ranking is expressed according to
[14] with the following keywords:

• MUST – for requirements which are mandatory for design and implementaƟon of the FELIX framework
and its components,

• SHOULD – for requirementswhich are recommended due to increased efficiency, opƟmizaƟon or any other
posiƟve effect to the end users

• MAY – for requirements which are opƟonal and do not influence overall FELIX funcƟonality in significant
manner.

SRs usually directly reference one or more URs, explicitly linking the Use Cases with specific FELIX funcƟonality.

ID Requirement DescripƟon UR Ref.
SR.1.1 User request acceptance The FELIX framework MUST accept user requests

for a slice, which includes a minimal set of details
required to create a mulƟ-technology
mulƟ-domain slice. The "minimal set of details"
is technology dependent and is not in scope of
this document. The approval of a single request
may be the subject of addiƟonal consideraƟons
according to set policy or system constraints.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 13



General Architecture and FuncƟonal Blocks

SR.1.2 Implement a slice The FELIX framework MUST implement a user
slice, according to resources availability and
various constraints, respecƟng slice
requirements provided by a user. The slice may
be mulƟ-technology and mulƟ-domain. FELIX
MUST be able to orchestrate the resources
allocaƟon process and reply user with success or
failure noƟficaƟon of slice creaƟon.

SR.1.3 Request API The FELIX framework MUST provide a user API,
which allows to perform the minimal set of
operaƟons: (i) request a slice; (ii) check slice
status; (iii) request a slice terminaƟon

SR.1.4 Distributed environment
support

The FELIX framework by default is a mulƟ-domain
environment and therefore its components
MUST be designed and implemented in a way
allowing the distribuƟon of the components and
independent system deployments in parƟcular
domains. All framework enƟƟes MUST be able to
be instanƟated as standalone components, and
MUST NOT depend on each other. The only
allowed dependency is a network
communicaƟon between enƟƟes, however
enƟƟes should handle communicaƟon failures
and conƟnue operaƟon without criƟcal errors.

SR.1.5 User slice control A user MUST have immediate access to a created
FELIX slice, so that he/she can reach and
manipulate any resource, that was expressed as
a slice requirement. FELIX may hide some slice
infrastructure components, which are vital for
slice delivery but was not explicitly menƟoned by
a user, e.g. network hardware for inter-domain
connecƟvity, hardware virtualizaƟon plaƞorm,
etc.

SR.1.6 User web portal The FELIX framework MUST provide end users
with a graphical user interface, e.g. a web portal,
as an interacƟon mechanism. A user must be
able to manage his slices and reservaƟons
through the GUI and receive noƟficaƟon from
the system.

SR.1.7 Command line access The FELIX framework MUST provide users with
command line style interface, in order to request
and manage slices. It is advised to reuse exisƟng
CLI tools, like OMNI or SFI, with proper
adaptaƟon to FELIX architecture.
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SR.1.8 Complex slice
infrastructure creaƟon

The FELIX framework MUST be able to build on
demand a complex slices, using infrastructures
and resources of different domains at the same
Ɵme. Users should not be restricted by the
architecture in the amount of resources allowed
to build a slice, except for authorizaƟon, policy
and infrastructure constraints. Slices may consist
of any amount of SDN, transport network and/or
IT resources, providing users with wide range of
services and giving the control over the
resources directly to a parƟcular user. The
exemplary usage of FELIX framework is described
in [20] deliverable in Use Case secƟon.

SR.1.9 Messaging consistency
and integrity

The message exchange between the FELIX
framework enƟƟes MUST be assured to be
secure and consistent, in the sense that message
delivery must be controlled and monitored. The
enƟƟes must be assured that the message is
delivered or a failure has occurred. The integrity
of the message must be protected, in order to
prevent modificaƟon of the message content by
unauthorized external enƟƟes.

SR.1.10 The FELIX framework
must control resources
of different types

In order to deliver to a user a mulƟ-technological
slice, including resources of different types, the
FELIX framework MUST be able to manage
different kind of technologies, including SDN,
transport networks, and IT resources. FELIX
MUST provide mechanisms to request
configuraƟon and synchronize technological
parts of slice.

UR.1, UR.2

SR.1.11 Scalable technology
modules deployment

The technology management modules (Resource
Managers -- RM) in single domain MUST be able
to be deployed in scalable and efficient way. The
parƟcular technological sub-domains managers
should be able to be deployed independently
and should not relay on each other during
operaƟon, unless a synchronizaƟon effort is
needed. Therefore an administrator should have
an opƟon to deploy only some of the available
RMs, and not all of them, if they are not required.

SR.1.12 Support for SDN
resources

The FELIX framework MUST be able to configure
SDN resource types within a parƟcular domain,
in order to create and configure a user slice, and
deliver this slice under user control.

UR.3

SR.1.13 Support for Transport
Network resources

The FELIX framework MUST be able to configure
a transport network resource types within a
parƟcular domain, in order to create and
configure a user slice, and deliver this slice under
user control.

UR.3
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SR.1.14 Support for IT resources The FELIX framework MUST be able to configure
an IT (e.g. servers, data storage, etc.) resource
types within a parƟcular domain, in order to
create and configure a user slice, and deliver this
slice under user control.

UR.3

SR.1.15 OrchestraƟon and
synchronizaƟon of
resources configuraƟon

The FELIX framework MUST orchestrate and
synchronize configuraƟon of parƟcular
sub-domain configuraƟons (SDN, transport
networks, IT, etc.), providing unified slice
resources able to collaborate in a transparent
way (not disturbing end user acƟons).
ParƟcularly, the integraƟon of SDN and Transport
Network resources is criƟcal for achieving the
FELIX project objecƟves.

UR.3, UR.10

SR.1.16 Organized orchestraƟon
layer of FELIX
framework

The orchestraƟon layer of FELIX MUST be
hierarchical, organized, and scalable in the
context of deployment and management. This
will require coexistence of mulƟple orchestraƟon
enƟƟes, able to collaborate in organized manner
for:

• delegaƟng (also spliƫng) requests to
appropriate orchestrators or RMs

• forwarding messages in hierarchical model

• synchronize state for consistent global
view of slices and resources

UR.11

SR.1.17 Resources allocaƟon
mechanism in
distributed environment

The FELIX framework MUST have a resources
allocaƟon mechanism, which will be able upon a
use request to:

• idenƟfy required resources

• locate the resources in domains (relaying
on available informaƟon)

• construct iniƟal draŌ of slice descripƟon,
including informaƟon on domains and
their resources required to build a user
slice

• accept constrained queries providing slice
descripƟons excluding parƟcular resources
in a domain (e.g. when a reservaƟon fail
due to parƟcular domain, a new resources
search should not try to use the
""refused"" resources )

UR.4
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SR.1.18 Support for
inter-domain transit
network configuraƟon

Transit Network resources MUST be able to be
configured involving mulƟple domains, so that a
created connecƟon can link and/or pass mulƟple
administraƟvely independent domains, managed
by different ROs and RMs. The inter-domain
configuraƟon must be under control of proper
ROs and RMs, which should be aware of such
acƟon and required interacƟon.

UR.6, UR.12

SR.1.19 AuthenƟcaƟon of users The FELIX framework MUST be able to
authenƟcate end users in advance, before
providing them access to any FELIX controlled
resources and slices.

UR.5

SR.1.20 AuthenƟcaƟon of FELIX
enƟƟes

All FELIX enƟƟes MUST be able to authenƟcate
each other (e.g. with X.509 cerƟficates), in order
to prevent unauthorized resource manipulaƟon.

UR.5

SR.1.21 AuthorizaƟon of users The FELIX framework MUST be able to authorize
end users on parƟcular resources usage in order
to prevent abuse of resource usage. Users should
have access only to the resources assigned to
them by FELIX framework. AuthorizaƟon data
will also prevent users from invoking
unauthorized acƟons and define users roles (e.g.
administrator, experimenter, etc.)

UR.5

SR.1.22 AuthorizaƟon of FELIX
enƟƟes

All FELIX enƟƟes MUST be able to authorize each
other , in order to prevent unauthorized resource
manipulaƟon.

UR.5

SR.1.23 Users noƟficaƟons Users MUST be noƟfied about significant events
happening in the FELIX framework environment.
Such events include:

• acceptance of a single slice request

• confirmaƟon of resource booking

• noƟficaƟon on slice set up

• noƟficaƟon on recognized failures

• confirmaƟon of slice tear down

• noƟficaƟon of administraƟve messages
(e.g. planned maintenance)

The noƟficaƟon may be delivered at least as:

• email sent to a user, if a user explicitly
express such interest while request
submission and provide system with a
valid email address

• a noƟce in GUI related to a user, a slice or
a parƟcular reservaƟon.

UR.8
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SR.1.24 Resources awareness The FELIX framework MUST be aware of all
resources available for configuraƟon in the whole
controlled environment. This informaƟon is vital
for proper operaƟon, resource management and
configuraƟon. This informaƟon must be
organized and structured allowing browsing
resources types, domains in charge of them, and
relaƟon between domains (e.g. network
connecƟvity).

UR.7

SR.1.25 Resource informaƟon
propagaƟon

The global resource informaƟon MUST be
dynamically distributed to all FELIX enƟƟes,
which consider this informaƟon as criƟcal to
operate (mostly ROs and resources allocaƟon
enƟƟes). The framework MUST deliver an
automated mechanism (e.g. a lookup service)
where resource informaƟon can be stored and
distributed in consistent state.

UR.7

SR.1.26 Resources usage
tracking

The FELIX framework MUST keep track of
resources usage, assignment, and availability in
order to search and allocate only free resources
to new slices. FELIX MUST guarantee that the
same resource is not shared between more than
one user at the same Ɵme, providing exclusive
resources access and isolaƟon of slices.

UR.7

SR.1.27 End users VPN service The FELIX framework MUST provide a VPN
service with configurable resource access,
limited to slice scope. This will be one of the
mechanisms providing isolaƟon of user slice and
default way for users to access their slice
resources. The configuraƟon of VPN service per
user must include seƫng up authenƟcaƟon and
authorizaƟon details, restricƟng access to
allowed resources only, seƫng up access
policies, and possibly firewall restricƟons. The
user must be authenƟcated and authorized to
the VPN service in order to prevent resources
abuse or unauthorized access. The VPN service is
configured on per slice and per user basis, and
the configuraƟon process is allowed to be
manual.

UR.9

Table 2.1: MUST System Requirements

ID Requirement DescripƟon UR Ref.
SR.2.1 AccounƟng informaƟon The FELIX framework SHOULD be able to collect

accounƟng informaƟon in order to track user
acƟvity and resources uƟlizaƟon. This will allow
create resources usage reports and account
users for their resources uƟlizaƟon. AccounƟng
informaƟon may also be used to restrict users
e.g. with resources quotas, etc.

UR.20
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SR.2.2 Monitoring up-to date
resources status

The resources informaƟon and/or FELIX system
enƟƟes SHOULD be able to be updated
frequently or on-event by monitoring system, in
case of resource status change, i.e. in
unexpected failure condiƟons. This will
potenƟally allow to make FELIX framework more
robust and react on criƟcal situaƟons.

UR.13

SR.2.3 NoƟfy users on
unexpected failures

The FELIX framework SHOULD be able to noƟfy
users about criƟcal situaƟon encountered during
slice operaƟon, i.e. unexpected resources
failure. The system may or may not undertake a
repair acƟon, however user SHOULD be noƟfied
that the slice is not fully operated or unavailable
at all. The noƟficaƟon SHOULD include the
amount of informaƟon will not discover FELIX
criƟcal informaƟon, yet it will be meaningful for
the end users, allowing to understand the cause
and locaƟon of the problem.

UR.8, UR.13

SR.2.4 Resilient service
configuraƟon

While searching, allocaƟng and configuring
FELIX resources for slice purposes, FELIX
framework SHOULD be able to implement
resiliency features, which will protect all or
criƟcal resources in case of failure. Resiliency
SHOULD be opƟonal for end users and must be
explicitly expressed by an end user at slice
request Ɵme.

UR.17

SR.2.5 CriƟcal failure
restoraƟon

In case of a criƟcal failure regarding usage of
slice resources, the FELIX framework SHOULD
take a repair acƟon. If a user expressed
resiliency expectaƟon, the protected/backup
resources can be used. If a user did not express
resiliency as a requirement, or failure applied to
non protected resources, a repair acƟon MAY
involve reconfiguraƟon of exisƟng slice
pre-empted by now resources search with
addiƟonal constraints.

UR.17

SR.2.6 OpƟmizaƟon and
automaƟon of
resources allocaƟon

The resources informaƟon and/or FELIX system
enƟƟes SHOULD be able to be updated
frequently or on-event by monitoring system, in
case of resource status change, i.e. in
unexpected failure condiƟons. This will
potenƟally allow to make FELIX framework more
robust and resilient, and as a consequence
provide beƩer, more reliable services to the end
users. The informaƟon on current and planned
resources status can be potenƟally also used for
resource scheduling and planning, in order to
make the assignment more stable and failure
proof.

UR.15
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SR.2.7 Dynamic resources
configuraƟon

The FELIX framework resources allocaƟon
mechanism SHOULD be automated, so that the
incoming request are served immediately
without delays of human intervenƟon.
Framework should have autonomy to decide
which resources and in which domain should be
delegated in order to build a user slice. The
process should include opƟmizaƟon
mechanisms and respect user constraints and
SLA.

UR.15

SR.2.8 Automated
configuraƟon of VPN
service

The FELIX framework VPN service SHOULD be
configured automaƟcally by FELIX framework on
per slice per user basis, regarding a user slice
request and assigned resources. The framework
should have all credenƟals to provide
authenƟcaƟon and authorizaƟon configuraƟons,
set up firewall policies, user policies, access
privileges, and whatever other acƟons, required
to allow parƟcular user to access his assigned
resources/slice. At the same Ɵme the
configuraƟon must assure slice and users
isolaƟon in the FELIX environment, prevenƟng
resources abuse and over-uƟlizaƟon.

SR.2.9 RMs may be able to
interact directly in
inter-domain
environment

For opƟmizaƟon and efficiency of configuraƟon
process RMs SHOULD be permiƩed to interact,
despite they may be deployed in different
administraƟve domains and be supervised by
different ROs. In case a configuraƟon of one
resources depends on configuraƟon of other
resources in different domain, and those
resources are of the same type, the RMs can
interact directly, without intermediate
supervising ROs. This situaƟon can occur e.g.
while seƫng up transport network connecƟvity
and domains must agree common VLAN
idenƟfied or exchange other connecƟon specific
aƩributes.

UR.12

SR.2.10 Resources allocaƟon
opƟmizaƟon

While searching and allocaƟng resources, the
FELIX framework SHOULD use mechanisms
allowing opƟmizaƟon of resources uƟlizaƟon,
which are not explicitly menƟoned in a user
request. Such mechanism may e.g. consider
load balancing, resources uƟlizaƟon levels,
overall energy consumpƟon, etc.

UR.14
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SR.2.11 Request aƩributes A user slice request must contain a minimal
required set of aƩributes as defined by FELIX.
The FELIX framework SHOULD however allow to
specify also opƟonal aƩributes, which constraint
a slice resources in more advance manner. For
transport network connecƟon a minimal set of
informaƟon to deliver a circuit is a start point,
end point and capacity, while user can
addiƟonally request e.g. RTT limits, or allowed
VLAN range. For SDN resource types, a user may
want to define details regarding traffic
organizaƟon specifying parƟcular network flows
or restricƟons on SDN resources.

UR.15,
UR.16,
UR.19

SR.2.12 Default slice controller The FELIX framework SHOULD deliver a default
slice controller, which can be used by a user to
manipulate resources within a parƟcular slice. A
user however is not obliged to use this
controller and may deploy its own. The decision
must be however taken at the slice request
submission Ɵme, as proper resources holder will
be prepared.

SR.2.13 Advance reservaƟons The FELIX framework SHOULD support advance
reservaƟon scheduling, where users can specify
a slice start Ɵme in the future and a lifeƟme
duraƟon of a slice. This will force the framework
to analyse resources availability not only in the
moment of serving the request but also future
planning of resources usage. The Ɵme
constraints for user (e.g. the duraƟon of a
reservaƟon and how far in advance can a
reservaƟon be requested) should be defined in
the form of service policy and framework should
take them as configuraƟon item.

UR.18

Table 2.2: SHOULD System Requirements

ID Requirement DescripƟon UR Ref.
SR.3.1 MulƟ-point to

mulƟ-point network
connecƟvity

The FELIX framework MAY support mulƟ-point
network connecƟvity for slice building. The
default method for implemenƟng a transport
network connecƟvity, i.e. for mulƟ-domain
purposes, is a point-to-point service. Providing
mulƟ-point services will enable more scalable
configuraƟon and allow more advanced slice
configuraƟon.

UR.21

SR.3.2 Data replicaƟon
mechanism

Usage of mulƟple data storage faciliƟes in single
slice may potenƟally require a synchronizaƟon
of data repositories. The FELIX framework MAY
support such synchronizaƟon and provide data
replicaƟon tools internally.

UR.23
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SR.3.3 Monitoring API The FELIX framework MAY implement API of
various monitoring tools (e.g. PerfSONAR,
Nagios, etc.), which will allow to reuse exisƟng
monitoring soluƟons and improve FELIX
monitoring capabiliƟes.

UR.22

Table 2.3: MAY System Requirements
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3 Related Work and Testbed Analysis
This chapter discusses some exisƟng FI iniƟaƟves and infrastructures relevant to FELIX and analyses the related
outcomes and architectural approach with respect to the FELIX design goals.

3.1 Survey of European and Japanese testbed architectures
In this chapter, the main aspects of some FIRE (EU) and RISE (Japan) projects are summarized with focus on the
proposed architecture, the interconnecƟons between the different testbeds and the federaƟon approaches. We
have chosen to restrict the analysis to the OFELIA, FIBRE, FED4FIRE, BonFIRE projects for the European side and
to the GridARS and RISE projects for the Japanese side.

3.1.1 OFELIA

OFELIA is a collaboraƟve project within the European Commission’s FP7 ICT WorkProgramme. It started in Octo-
ber 2010 and ended in October 2013.

The OFELIA project created, and now maintains, a pan-European experimental network facility that allows
researchers to not only experiment “on” a real network but to control and extend the network itself in a precise
and dynamic fashion. The OFELIA facility is based on OpenFlow, an emerging networking technology that allows
virtualizaƟon and control of the network environment through secure and standardized interfaces.

Ten interconnected islands, based onOpenFlow hardware infrastructure, form a diverseOpenFlow infrastruc-
ture that allows experimentaƟon on mulƟ-layer and mulƟ-technology networks. OFELIA's objecƟve is to provide
experimental faciliƟes which allow for the flexible integraƟon of test and producƟon traffic by isolaƟng the traffic
domains inside the OpenFlow enabled network equipment. This creates realisƟc test scenarios and facilitates
the seamless deployment of successfully tested technology into the real-world.

The overall, high level system architecture for OFELIA can be divided into 2 layers -- as illustrated in Figure
3.1. From boƩom to top:

Figure 3.1: OFELIA High Level System Architecture

• Physical layer: comprises the compuƟng resources (servers, processors) and network resources (routers,
switches, links, wireless devices and opƟcal components). We idenƟfy this as the physical substrate, which
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is composed of these compuƟng and network resources, the connecƟvity between them and the physical
topology itself. These resources are accessed by theOFELIA Control Framework to achieve its experimental
facility objecƟves. Since the technologies and components used in the physical substrate do evolve with
Ɵme as new innovaƟons arise, OFELIA aims to keep track of the technology evoluƟon and accommodate
the appropriate changes to the facility throughout the life Ɵme of the facility.

• Control Framework layer: contains the whole control framework components, which manage and mon-
itor the applicaƟons and devices in the physical substrate layer. The Aggregate Managers and Resource
Managers are placed here. This layer can be further divided in its components:

– the Expedient is the GUI and allows the connecƟon and federaƟon with different Aggregate Man-
agers via its plug-ins

– the Aggregate Managers enable experimenters to create both compute and network resources via
the VT AM and OF AM respecƟvely

– theResourceManagersdodirectly interactwith the physical layer, provisioning computes (XenServer)
or flow rules to establish the topology (FlowVisor)

We could also consider a hidden and higher level in the user flow that is performed by humans. It is there
where the policies for the usage of the facility are defined. For that maƩer, the Network OperaƟons Centre
acts as the first point of contact for all technical and non-technical issues relaƟng to the faciliƟes and experi-
menters/researchers who will use the OFELIA facility, deciding policies on the resources and the grant or denial
of requests.

For further details on the architecture, please refer to Appendix A.

3.1.2 FIBRE

The FIBRE (Future Internet testbeds and experimentaƟon between BRazil and Europe) project aims to design, im-
plement and validate a shared Future Internet research facility, supporƟng the joint experimentaƟon of European
and Brazilian researchers.

The FIBRE infrastructure is a federaƟon of testbeds distributed across Europe and Brazil. The FIBRE-EU system
connects the OpenFlow-based testbeds developed in Barcelona (i2CAT) and Bristol (University of Bristol) which
are managed by the OFELIA control framework. Moreover, it incorporates the NITOS testbed deployed at Uni-
versity of Thessaly, which is composed by several wireless nodes based on commercial WiFi cards and Linux open
source drivers. On the other hand, the FIBRE-BR testbed includes nine Brazilian partners interconnected using
private L2 channels. The VLAN-based L2 physical link between Europe and Brazil is provided by GÉANT, Internet2
and RedCLARA.

The whole infrastructure is managed by different kinds of control andmonitoring framework (CMFs). Indeed,
FIBRE includes and enhances testbeds from other projects like OFELIA, OMF and ProtoGENI, which has been
modified with the necessary soŌware components to align their northbound interface to Slice-Based FederaƟon
Architecture (SFA) specificaƟons [4].

The FIBRE architecture is composed by several mulƟ-layer building blocks, as follows:

• AuthoriƟes. The FIBRE project has chosen to have two top-domain authoriƟes, the first under the re-
sponsibility of Brazil and the laƩer under Europe responsibility. These inter-connected authoriƟes can
inter-operate to allow the federaƟon of BR and EU sites.

• SFA Registry. The SFA Registry is a database able to store the informaƟon related to users and projects. It
should manage the cerƟficates provided by the authoriƟes.

• Portal. MySLICE tool is the graphical (web) user interface chosen by FIBRE. Refer to Table 3.1 for details.
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• SFA gateway. The SFA gateway is designed to translate the user's requests to SFA-based requests which
are aligned to the GENI (version 2 or 3) API. The SFA gateway also provides slice management funcƟons.

• Aggregate managers. FIBRE reuses the Aggregate Managers (AM) already developed in OFELIA projects
related to OpenFlow (OPTIN AM) and Xen-based (VT AM) resources and introduces a new AM to manage
opƟcal switches (ROADM) devices.

The following Figure 3.2 depicts the FIBRE architecture:

Figure 3.2: FIBRE Architecture

For further details, please refer to Appendix A.

3.1.3 Fed4FIRE

Fed4FIRE offers a common federaƟon framework for Future Internet Research and ExperimentaƟon faciliƟes that:

• Is adopted by different communiƟes (experimentaƟon faciliƟes, experimenters, academia, industry)

• Supports powerful experiment lifecyclemanagement (including tools for discovery and reservaƟon, exper-
iment control, measurements, etc.)

• Supports key aspects of trustworthiness (federated idenƟty management and access control, accountabil-
ity, SLA management)

For experimenters, Fed4FIRE facilitates the creaƟon of experiments that break the boundaries of the different
FIRE domains (wireless, wired, OpenFlow, cloud compuƟng, smart ciƟes, services, etc.) and easily access all
of the required resources with a single unified account. It allows experimenters to focus on your core task of
experimentaƟon, instead of on pracƟcal aspects such as learning to work with different tools for each testbed,
requesƟng accounts on each testbed separately, etc.

The Fed4FIRE architecture ismadeupof a number of components. In Figure 3.3, wedescribe the components
of the architecture in a resource discovery, requirement, reservaƟon and provisioning scenario. The architecture
consists of 4 layers: testbed resources, testbed management soŌware, broker services and experimenter tools:

• The boƩom layer of Fed4FIRE is composed of the the physical testbed resources (servers, virtual machines,
switches, sensors, services, etc).
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• On top of this, the testbedmanagement soŌwaremanages these resources. In addiƟon, the testbed users
and experiments are present at this level.

• The third Ɵer of Fed4FIRE is a ‘broker services’ layer which contains services run by 3rd parƟes or the feder-
aƟon itself. These broker between the testbeds and the experimenters. For example, a broker reservaƟon
service will seek to match the resources demanded by an experimenter and the availability of these within
the testbed. An orchestraƟon service or a portal is also considered to be a broker.

• At the top of the Fed4FIRE architecture, the experimenter tools/user interfaces are found. These are
deployed on the experimenter’s computer and are used by the experimenter to communicate with the
testbed management frameworks, testbed resources and brokers.

Each soŌware component depicted in the Figure 3.3 has an interface describing how other components can
communicate with it. IdenƟcal interfaces are annotated with the same color. Therefore when there are differ-
ent colors present on some components, this means that they expose different interfaces. The arrows between
components show the interacƟons. In the verƟcal columns of the picture, three administraƟve domains are en-
visioned: testbed A, testbed B and the federaƟon facilitator. These three domains refer to logical locaƟons, not
physical ones. So testbed A resources can be distributed overmulƟple locaƟons (e.g. PlanetLab), but themanage-
ment of that testbed is under a single administraƟon. The same holds for the federaƟon facilitator: components
can be distributed over mulƟple datacenters, but they are under a single administraƟon enƟty. This however
does not exclude the possibility that 3rd parƟes will arise with addiƟonal facilitaƟon funcƟonaliƟes. Besides, it is
also possible that the federaƟon facilitator is mirrored across different domains to introduce redundancy, which
could be valuable in case of failure or disconƟnuaƟon of the main federaƟon facilitator.

Figure 3.3: Proposed architecture for discovery, requirements, reservaƟon and provisioning
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Figure 3.3 also demonstrates how Fed4FIRE has adopted a distributed architectural design. Components
can be idenƟfied at the testbed locaƟon, at the federaƟon facilitator, and at the experimenter level (in this case
different experimenter clients tools). One of the main design principles of the architecture is that components
belonging to the federaƟon facilitator are only intended tomake operaƟon and usage of the federaƟonmore con-
venient. They may never be actually necessary for a correct operaƟon of the federaƟon. F4F call these ‘brokers’,
as they provide ‘brokered’ access between experimenter tools and the testbeds.

For further details, including informaƟon on Fed4FIRE monitoring, measurement and experiment control,
please refer to Appendix A.

3.1.4 BonFIRE

The BonFIRE (Building service testbeds for Future Internet Research and ExperimentaƟon) project provides a
state-of-the-art mulƟ-site cloud facility for applicaƟons, services and systems research in the Internet of Services
(IoS) community. The infrastructure, composed of 7 geographically distributed testbeds across Europe, gives a
controlled access to heterogeneous resources (compute, storage and networking) to researchers who can benefit
of the necessary control and monitoring tools for a detailed experimentaƟon of their systems and applicaƟons.

The BonFIRE frameworkmanages the physical and virtual resources which can be easily created, updated and
deleted. Moreover, the available physical hardware (162 nodes/1800 cores) can be automaƟcally configured or
reserved “on-demand”. The enƟre system is monitored providing single or aggregated metrics at resource and
infrastructure level (e.g. CPU usage, packet delay).

To fulfill these requirements, BonFIRE adopts an architecture composed by several elements which expose
their funcƟonaliƟes through well-defined APIs. The main components are the following:

• The Portal and the CLI tools offer the user interface to request virtual infrastructures and show the running
experiments, the available resources at each testbed site, the monitoring informaƟon, etc…

• The Experiment Manager provides an interface to schedule, plan and orchestrate the execuƟon of an
experiment.

• The Resource Manager provides an interface to create, manage and terminate compute, storage and net-
work resources, which may physically reside at any testbed in the BonFIRE system.

• The Enactor allows the decoupling of the specific implementaƟons of the testbed APIs from the BonFIRE
Resource Manager providing a unified interface.

BonFIRE has also addressed the issues related to the interconnecƟons between different sites. Instead of
relying on the best-effort Internet connecƟvity, the cloud resources belonging to different testbeds can be inter-
connected through a dedicated network systemwhich offers a Bandwidth on Demand (BoD) service. This service
is provided through the interconnecƟon between some BonFIRE testbed sites and the GÉANT Bandwidth-on-
Demand system (AutoBAHN). BoD services are described in BonFIRE through a new OCCI resource (the site-link)
and they are managed through a dedicated adaptor implemented within the enactor component.

The Figure 3.4 gives an overview of the adopted BonFIRE architecture which includes the Cloud-to-Net (Au-
toBAHN) services. For further details, please refer to Appendix A.
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Figure 3.4: BonFIRE Architecture with Cloud-to-Net extensions

3.1.5 GridARS

GridARS[21] is a reference implementaƟon of the Open Grid Forum (OGF) Network Services Interfaces (NSI),
ConnecƟon Service (CS) protocol standard, developed by AIST. The CS protocol version 2 is a Web services-based
interface to reserve, provision, release and terminate a service, such as a end-to-end connecƟon, via a two-phase
commit protocol. GridARS can coordinate mulƟple resources (services), such as a network connecƟon, virtual
machines and storage spaces, via the CS protocol in order to provide requesters with a virtual infrastructure,
which spans several cloud resources, provided by mulƟple management domains including commercial sectors.

Figure 3.5 shows a resource management configuraƟon assumed by GridARS; Domain A and B denote net-
work domains managed by different administraƟve organizaƟons. GridARS modules could be configured in a
coordinated hierarchical manner, or in parallel, where several resource coordinators denoted by GRS compete
for resources with each other on behalf of their requesters, such as users and applicaƟons.

GridARS provides three service components:

• Resource Management Service (RMS)

• Distributed Monitoring Service (DMS)

• Resource Discovery Service (RDS)

ResourceManagement Service (RMS) is based on NSI CS and consists of Global Resource Coordinators (GRCs)
and Resource Managers (RMs) for Computers (CRM), Networks (NRM), and Storage (SRM). CoordinaƟng with
GRCs and RMs, RMS enables to coordinate heterogeneous virtual resources on mulƟple cloud environment. GRC
has a co-allocaƟon planning capability, which determines a suitable resource allocaƟon plan.

Distributed Monitoring Service (DMS) allows requesters to monitor the virtual environment allocated to
them. DMS does not have a central database, but gathers distributed monitoring informaƟon, tracking the hier-
archical RMS reservaƟon tree using the reservaƟon ID, automaƟcally. DMS consists of Aggregators (DMS/A) and
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Figure 3.5: GridARS resource management configuraƟon.

Collectors (DMS/C). DMS/A gathers monitoring informaƟon from related DMS/As or DMS/Cs distributed over
mulƟple domains, and provides the informaƟon to the requester. Each DMS/C monitors the reserved resources
periodically, filters the monitoring informaƟon by the domain policy, and provides the requester with the autho-
rized informaƟon.

Resource Discovery Service (RDS) collects staƟc resource informaƟon items from each resource domain and
provides the aggregated informaƟon. The RDS implementaƟon is based on Catalog Service Web (CSW), defined
by Open GeospaƟal ConsorƟum (OGC), which is an online XML-based database. Each resource domain can POST
its staƟc resource informaƟon, such as network topology, number of VMs, and storage spaces.

For further details, please refer to Appendix A.

3.1.6 RISE

Since 2009, JGN-X have been working on developing a naƟon-wide OpenFlow testbed: RISE (Research Infrastruc-
ture for large-Scale network Experiments). The RISE project is successfully running an OpenFlow testbed over
JGN-X, fully uƟlizing its wide-area coverage from US West coast to Southeast Asia. RISE provides a wide-area
OpenFlow network composed of hardware OpenFlow switches. It also provides the RISE OpenFlow Controller
based on Trema and developed by NEC. Also researchers and developers can try their own OF controller on the
RISE network for their experiment. SDN or Cloud developers can also try their own soŌware experiments with
the dynamic network provisioned by the RISE controller. Currently, RISE has 11 sites in Japan, and three sites
overseas (see Figure 3.6). For each site, RISE has a number of OpenFlow switches and two VM servers (Japan
domesƟc only). Currently, there is no control framework or portal. As such, the FELIX control framework will be
a great contribuƟon to the exisƟng testbed.

New RISE architecture for data-plane
Through the operaƟon of RISE testbed, the RISE team encountered the following scalability issues:

• Unevenly distributed OpenFlow switches: Administrators cannot assign OpenFlow switches for users to fit
their required topology. Users concentrate in sites which havemulƟple links. For example, if user requests
four OpenFlow switches with a loop topology, they can only be hosted in one of four sites.
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Figure 3.6: Global RISE testbed infrastructure

• Number of users: A mulƟ-user environment is implemented using VSI (Virtual Switch Instance). The maxi-
mum users supported by this is 16 and therefore, only 16 users can share single physical OpenFlow switch
at a maximum.

Figure 3.7: ImplementaƟon by rewriƟng MAC addresses

Currently, work is focusing on remedying the inability to freely create topologies using the given OpenFlow
switches, parƟcularly as this can constrain a user’s experiments. To solve this issue, they design and discuss topol-
ogy management system called “RISE3.0”, which uses OpenFlow. In RISE 3.0, a “topology-separaƟon funcƟon”
is implemented which separates physical links and neighbour links between OpenFlow switches. This provides a
more flexible experimental network. In order to realize the "topology-separaƟon funcƟon", they introduced the
concept of a logical path with MAC address rewriƟng. Actually, in the RISE controller, a logical path is defined by
set of physical links. MAC addresses are then rewriƩen to guarantee the uniqueness of the packet in RISE OFSes
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(Figure 3.7). The controller employs the address rewriƟng method to forward packets. It idenƟfies flows with
only the MAC address and VLAN ID (user ID). With this method, the OpenFlow switch can uƟlize the hardware
processing path to forward packets without impacƟng performance. For further details, please refer to Appendix
A.

3.2 FELIX ConsideraƟons
The table below summarizes the architectural elements giving a brief descripƟonof their objecƟves and funcƟons.
Moreover, the FELIX ConsideraƟons column is introduced for a future reuse of the element in the FELIX soŌware
framework.

Architecture
Element

Brief DescripƟon FELIX ConsideraƟons

OFELIA
Expedient Expedient is a pluggable, centralized GENI

framework Graphical User Interface. It
works on top of the OFELIA Control
Framework and therefore allows to:

• to access OCF funcƟons: setup,
(de)allocaƟon and monitoring of the
experiment resources within the
OFELIA facility

• to connect with Aggregate Managers
through related plug-ins to display,
provision and configure physical or
virtual resources

• the experimenter to manage
projects, slices and permissions

• the admin to manage users, add
aggregates and approve project
creaƟon requests

Technical: web applicaƟon developed with
Python and Django; requires Apache2

FELIX could use Expedient for its
extendable architecture. It should enhance
the module with new plug-ins for the new
FELIX resources (e.g. inter-datacenters
aggregate manager).

Aggregate
Managers

This layer includes enƟƟes for the
management and aggregaƟon of
homogeneous resources:

• VT-AM: for the management of
virtual machines on Xen-based
servers

• Opt-in manager/FOAM: for the
management of OpenFlow-based
switches

Technical: need XenServer and FlowVisor
RMs, respecƟvely

FELIX could reuse VT-AM and
OpƟn-Manager to virtualize compute and
network resources taking advantage of the
underlying technology (XenServer and
FlowVisor). FELIX should extend this layer
with new aggregates (e.g. inter-datacenters
connecƟvity aggregate manager).
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Resource
Managers

Resource Managers manage physical
resources (servers, OpenFlow switches,
opƟcal devices) using dedicated interfaces:

• FlowVisor is a transparent proxy
between OpenFlow switches and
mulƟple OpenFlow controllers. It is
used to create “slices” of network
resources enforcing isolaƟon
between each slice.

• XenServer is an open source
virtualizaƟon plaƞorm for server
virtual infrastructure.

FELIX could reuse the resource managers
tools for their high quality and stability.
Those seem to be completely in scope with
the FELIX architecture.

FIBRE
MySlice MySlice is a resource management tool

used to list, filter, and reserve resources
made available through the SFA control
framework. It is a web framework based
on a independent plugins and shared
messages interface. The plugins provide
operaƟons for query ediƟng, data display
and resource allocaƟon.

FELIX must provide a graphical user
interface (GUI or WUI). MySlice is a good
candidate to became the FELIX portal for
its strong relaƟonship with SFA
specificaƟons. Its SFA-registry could be
used for AA (or AAA) services.

Expedient Similar to OFELIA. See OFELIA secƟon (Expedient).
Aggregate
Managers

Similar to OFELIA but with some addiƟons,
such as a common northbound SFA
interface for the following:

• VT-AM: for the management of
virtual machines on Xen-based
servers (being adapted to AMsoil)

• Opt-in manager: for the
management of OpenFlow-based
switches

And also another aggregate:

• Roadm-AM: for the management of
the Roadm opƟcal devices (based on
AMsoil)

Technical: need XenServer, FlowVisor and
OpenNaaS RMs, respecƟvely

See OFELIA secƟon (Aggregate Managers).

Resource
Managers

Similar to OFELIA, but including:

• OpenNaaS is an open source
plaƞorm for the provisioning of
network resources. It provides
services for the deployment and
automated configuraƟon of network
infrastructures.

See OFELIA secƟon (Resource Managers).
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Enhanced
Nox-controller

Enhanced Nox-controller is an
enhancement of the NOX-classic OpenFlow
controller used for network discovery and
OpenFlow-based switches management. It
can install/remove flow-entries in the
underlying switches and retrieve OpenFlow
monitoring informaƟon. It communicates
with F-PCE module for a path computaƟon
inside a physical or virtual topology. It is
based on the "old" Zaku branch of the
NOX-classic.

FELIX should use one of the latest SDN
controllers (e.g. OpenDaylight) to manage
OpenFlow switches. The NOX-classic (old
zaku branch) is now deprecated and is
recommended to use POX (python version)
or the new version of NOX (only C++ code).

Flow-aware
Path
ComputaƟon
Engine

F-PCE is based on the IETF PCE architecture
[16]. The module is responsible for the
composiƟon of the network services
related to the end-to-end flow routes. It is
a centralized enƟty providing algorithms
for the path computaƟon including the
involved OpenFlow-based switches and the
related flow-entries needed for the circuit
acƟvaƟon. The code is closed by a NXW
proprietary license.

FELIX should use a single path computaƟon
enƟty for seƫng up SDN slices and for
connecƟons between SDN islands. FELIX
should extend F-PCE with the “slices”
informaƟon and the real-Ɵme resource
uƟlizaƟon (intra and inter data-centers).

FED4FIRE
Portal Entry point that allows to register and

check the discovered available resources,
as well as allocaƟon and provisioning.

See FIBRE secƟon (MySlice).

IdenƟty
provider

Global registry of the federated users. May
be overridden by a local instance.

FELIX could benefit from inspiring or
adapƟng the local-if-not-global schema for
the provider/registry.

Testbed
directory

Lists info for all the federated testbeds,
whether readable for humans (website) or
computers (list of URIs).

FELIX could add this feature to improve the
informaƟon offered, either for provisioning
or monitoring purposes.

Tool directory Gives an overview of available tools for the
experimenters (website, through portal).

FELIX could add this feature to improve the
informaƟon offered to its experimenters.

CerƟficate
directory

Exposes a centralized repository of the
trusted root cerƟficates for the federated
faciliƟes.

FELIX should check if this approach is more
suitable to register the federaƟon
cerƟficates, rather than the SFA
Registry/DB.

Future
reservaƟon
broker

Facilitates future reservaƟons of resources
by finding and allocaƟng the right Ɵme
slots and resources over mulƟple testbeds.

FELIX should not integrate this
funcƟonaliƟes inside the portal. Check
instead whether to implement life-cycle
checks and orchestraƟon on a dedicated
component or to replicate this in the
hierarchical ROs.

Monitoring
tools

Measure data for faciliƟes, infrastructures
and experiments.

FELIX could inspire from this to implement
monitoring at different levels for both
infrastructures, experiments and resources
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OMNI Omni is a GENI command line tool for
reserving resources at GENI Aggregate
Managers (AMs) via the GENI AM API. The
Omni client also communicates with
Clearinghouses (also known as Control
Frameworks or CFs) to create slices, and
enumerate available GENI AMs. A
Clearinghouse is a framework of resources
that provides users with GENI accounts
(credenƟals). Users can use these
credenƟals to reserve resources in GENI
AMs.

FELIX could use OMNI as CLI tool in case it
decides to use GENI as a communicaƟon
standard.

SFI SFI is another command line client for SFA
interfaces for Discovery, reservaƟon,
provisioning and releasing and slice
management: create, open, update, start,
stop. It provides the funcƟonality to create,
update and display a slice. SFI also supports
resource discovery, reservaƟon and
provisioning. It can also be used to release
resources, and to start and stop a slice

FELIX could use SFI as CLI tool in case it
decides to use SFA as a communicaƟon
standard.

BonFIRE
Portal The Portal provides a web graphical

interface to access BonFIRE services. It
allows to:

• visualize capabiliƟes and resource
availability for the different testbed
sites.

• specify experiments through wizard
procedures, upload of experiment
descriptor or manual resource
declaraƟon.

• monitor the status and history of
running experiments.

The Portal is strictly focused on
experiments involving mainly IT resources,
with simple networking scenarios. FELIX
requires a more complex network
virtualizaƟon and management, leading to
a different informaƟon model, e.g.
considering network slices.

Experiment
Manager

The Experiment Manager schedules, plans
and orchestrates experiments execuƟon as
specified in the experiment descriptors.
The Experiment Manager provides an API
to the Portal or other user agents, and
manages the resources associated to an
experiment through the Resource Manager.

FELIX architecture does not include a
dedicated component for the management
of experiments life-cycle and orchestraƟon,
but integrates these funcƟonaliƟes in the
portal and the resource orchestrator.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 34



General Architecture and FuncƟonal Blocks

Resource
Manager

The Resource Manager provides a resource
level interface to create, update and
destroy virtual resources (compute,
network and storage resources), in
correlaƟon with experiments’ life-cycle.
The Resource Manager operates on the
overall physical infrastructure and offers 3
faciliƟes for on-demand provisioning and
in-advance reservaƟon, resource sharing
and monitoring of resource usage.

The Resource Manager is a centralized
enƟty that does not fit well to a distributed
and federated environments. Moreover,
the adopted informaƟon model is not fully
compliant with the proposed FELIX model,
due to the lack of concepts related to
network virtualizaƟon (e.g. network slices).

Enactor The Enactor abstracts the details of the
different testbed implementaƟons,
providing a unified OCCI interface towards
the Resource Manager. It includes adaptors
to interact with the different cloud
testbeds (e.g. Amazon EC2, GÉANT
AutoBAHN Bandwidth on Demand service,
FEDERICA infrastructure and
OpenStack-based cloud testbeds).

Due to the distributed nature of the
Aggregate Managers, the Enactor
funcƟonaliƟes are not fully required in
FELIX. Moreover, the Enactor exposes a
north-bound interface based on OCCI
extensions which are not compliant to SFA
specificaƟons.

IdenƟty
Manager

The IdenƟty Manager is used to
authenƟcate users and store their SSH
keys. It is a LDAP server.

The IdenƟty Manager funcƟons will be
covered by the SFA-registry or an LDAP
database in FELIX portal.

Message
Queue Server

The Message Queue Server provides
publish/subscribe mechanisms for the
other architecture components to
exchange asynchronous messages and
events related to infrastructure
management and experiments.

The exchange of messages in FELIX
architecture is sƟll under discussion.

CollecƟon
Cache

The CollecƟon Cache listens to events from
all sites to keep track of the current state of
each resource.

In FELIX architecture, these funcƟonaliƟes
will be embedded in the Resource
Manager.

Scheduler The Scheduler implements the in-advance
reservaƟon system, keeping track of the
Ɵme-slots reserved for the different
resources.

Advance reservaƟon funcƟons have not
been deeply discussed in FELIX
architecture.

AccounƟng
Service

The accounƟng service keeps track of the
lifeƟme of resources used by the
experimenters, generaƟng the data that
would be required by a billing system.

AccounƟng funcƟons have not been deeply
discussed in FELIX architecture.

AuthorizaƟon
Service

The AuthorizaƟon Service is used to ensure
that experimenters do not overuse their
allocated quote of resources.

AuthorizaƟon mechanisms in FELIX are
managed through SFA procedures.

Monitoring
Aggregator

The Monitoring Aggregator provides
monitoring informaƟon at the applicaƟon,
virtual machine and infrastructure level. It
is based on the Zabbix open source
soŌware.

The applicability of a Zabbix-based soluƟon
can be evaluated for the FELIX architecture.
However, dedicated monitoring agents
should be implemented for networking
services.
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ElasƟcity
Engine

The ElasƟcity Engine supports the
elasƟcity-as-a-service, where VMs creaƟon,
modificaƟon and deleƟon is automaƟcally
managed depending on the current load. It
is based on Zabbix as source of monitoring
informaƟon and HAProxy/Kamalio for load
balancers.

ElasƟcity funcƟons have not been deeply
discussed in FELIX architecture.

CoCoMa The CoCoMa framework allows
experimenters to emulate controlled
operaƟonal condiƟons for contenƟousness
and maliciousness in shared environments.

This feature is not completely in scope with
the FELIX project.

Experiment
Data Manager
(EDM) for
Provenance

The EDM for Provenance is a tool to
capture provenance data for experimenters
and reasoning about this informaƟon in an
ontological sense.

This feature is not completely in scope with
the FELIX project.

GridARS
Global
Resource
Coordinator

GRC manages and coordinates
heterogeneous resources. It could be
configured to work in different manners
(i.e. hierarchical or parallel modes)
allowing the interoperability of zones
managed by different GRCs.

FELIX could use GRC for coordinaƟon of
Transit Network Resource Managers.

Resource
Managers

They directly manage local resources. The
project defines 3 RMs:

• Networks Resource Manager (NRM)

• Computers Resource Manager
(CRM)

• Storage Resource Manager (SRM)

FELIX could use RMs as a wrapper of actual
resource management systems, e.g.,
OpenStack, CloudStack and SDN
controllers.

Distributed
Monitoring
Service

DMS monitors the virtual environment. It is
a distributed system composed by
Aggregators and Collectors.

• DMS/A gathers informaƟon from
other distributed DMS/As or
DMS/Cs.

• DMS/C monitors, filters and
provides the reserved resources to
the requesters.

FELIX could use DMS to collect distributed
monitoring informaƟon.

Resource
Discovery
Service

RDS collects staƟc resource informaƟon
items from each resource domain, and
provides the aggregated informaƟon.

FELIX could use RDS as a resource
discovery service of computer and network
resources.

RISE
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OpenFlow
Controller

OF Controller is based on Trema, developed
by NEC. It provides a Logical Path System
which is a virtualizaƟon framework able to
translate the physical OF switches into
logical enƟƟes for traffic isolaƟon. RISE
supports 2 different methods:

• VLAN stacking

• Address rewriƟng

FELIX could use the OpenFlow Controller as
base for the SDN Resource Manager,
basically for the OpenFlow-enabled
physical switches.

Table 3.1: Architectural Elements of ExisƟng Testbeds

3.3 Summary
In this secƟon, we briefly summarize the advantaged of the testbeds analyzed within this secƟon, focusing on
what is missing (or seems to be not fully covered) in their proposed architectures and offered services.

Our analysis takes into account different modules, services and interfaces. For instance, in the OFELIA-based
testbeds there is no concept of an Orchestrator, which might be seen as a drawback in large federaƟons. More-
over, OFELIA testbeds are inspired by SFA-like architectures where the federaƟon occurs at the resource level,
meaning that the clients have direct access to the different Resource and Aggregate Managers. This, again, can
be viewed as a major problem for scalability within distributed architectures.

Other testbeds such as BonFIRE are mainly focused on cloud compuƟng, therefore giving priority to comput-
ing rather than network resources. This results in a lack of a slice concept becomes complex to federate with.
However, it can provide dynamic network parameter configuraƟon (i.e. latency) and in release 3.1, it offers band-
width on demand services by using GÉANT's AutoBAHN as a third party interconnect between the EPCC and PSNC
sites (using NSI).

Meanwhile, FED4FIRE is an ambiƟous federaƟon of heterogeneous testbeds, but it is sƟll mainly focused on
how to effecƟvely offer the different services of the testbeds, and for the most part, avoids the maƩer of how
to serve to the clients/users all the federated resources as a single logical plane. However, this is one focus of
current efforts within the project. Furthermore, the network connecƟons between testbeds is fixed and cannot
be manipulated. This results in a lack of BoD.

Table 3.2 gives a schemaƟc overview of our analysis.

Project Advantage Disadvantage
OFELIA The LDAP, as a single and centralized

element, and its credenƟal management
logic (currently within Expedient) could be
extended and integrated in the FELIX
framework. There is a design for a
Clearinghouse component that aims to
modularize and externalize the credenƟals
management that could be completed and
used in FELIX. The Control Framework
Layer (SFA-based) could be enhanced to
manage the different FELIX SDN islands.

The inter-domain (inter-testbeds) network
segment seems to be not fully integrated
in the developed architecture. FELIX could
cover this gap with its new architectural
element (NSI Resource Manager).
Moreover, FELIX could orchestrate the IT &
networking resources with an higher-level
layer (Resource Orchestrator).
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FIBRE The SFA specificaƟons are adopted to
manage and federate testbeds. They could
be enhanced for the different FELIX SDN
islands.

The inter-connecƟons between different
testbeds are based on VPN (or other L2)
technology. FELIX should provide a
programmable architectural element for
the inter-domain network segments
(Transit Network Resource Manager). A
dedicated architectural element to
orchestrate resources seems to be missing.
FELIX should provide a component for this
purpose (Resource Orchestrator).

FED4FIRE The “broker” concept and its
funcƟonaliƟes could be extended to allow
an easy discovering phase of the FELIX
Resource Managers and Orchestrator.

The interconnecƟons between different
testbeds is covered by a dedicated
component that seems to be not
NSI-based. Moreover, there is not
Bandwidth-on-Demand funcƟonaliƟes
planned. Problems such as scalability have
yet to be analized.

BonFIRE The network system, based on GÉANT BoD
service (AutoBAHN), covers the
inter-testbeds connecƟons. FELIX
architecture could adopt an architectural
element (Transit Network Resource
Manager) to provide a
Bandwidth-on-Demand services over a
network domains.

The federaƟon concept is not invesƟgated
and the interfaces are not SFA compliant.

GridARS &
RISE

The NSI protocol and the generic
developed framework could be introduced
in the FELIX architecture providing a new
architectural component able to manage
the inter-domain network segment (Transit
Network Resource Manager).

The projects seem to be SFA agnosƟc.
Currently, there is no control framework or
portal. FELIX could provide a dedicated
control framework to manage their
OpenFlow resources.

Table 3.2: Overview of advantages and disadvantages of alterna-
Ɵve approaches
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4 System Architecture
FELIX aims to provide a framework which integrates resources of different kinds (e.g. transit network, SDN, IT,
etc.) from a mulƟdomain heterogeneous environment.

In order to implement such funcƟonality, we need a flexible and scalable architecture which can assure a suf-
ficient level of interacƟon between various system components. This secƟon introduces the core building blocks
of the FELIX architecture. Note that the detailed specificaƟon of themechanisms, protocols, and interfaces which
will implement the user requests over the federated testbed infrastructure are not in the scope of this deliver-
able. FELIX has opted to use a hierarchical model for inter-domain dependency management, with orchestrator
enƟƟes responsible for synchronizaƟon of resources. The overall architecture is illustrated in Figure 4.1.

Figure 4.1: FELIX overall architecture -- ROs use RM to manage physiacal resources of different types
(e.g. Transit Network, SDN, CompuƟng Resources).

The architecture can be seen as the combinaƟon of two spaces: the FELIX Space and the User Space. Both
spaces play disƟnct roles in the creaƟon and operaƟon of each and every slice, which is created by the FELIX
Space upon a user request, and further on managed by user tools in User Space.

FELIX Space The FELIX Space relies on Resource Orchestrators (ROs), Resource Managers (RMs), and the
physical (testbed) infrastructure to provide the resources needed for realizing a user slice. ResourceOrchestrators
(ROs) are stateful enƟƟes, which receive user requests and can either serve them directly or determine which
other RO or Resource Manager (RM) can serve the request. In effect, an RO can decide to delegate whole or part
of a user request to another RO or a specific RM. Each RM typically manages a specialized type of resources. For
example, a RMmay oversee the exact network resources in an SDN island, port interconnecƟon across islands, as
well as compuƟng and storage resources within a single administraƟve domain. We expect that each domainmay
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have one RO and several RMs, although this is an administraƟve and operaƟonal policy issue primarily. Similarly,
all RMs within a single domain should have single RO supervising them and be located at the boƩom of the RO
hierarchy. Note that an RO may not have RMs associated with it. An RO may act as a resource aggregaƟon agent
and can thus represent mulƟple administraƟve domains as one resources set to FELIX users.

In relaƟon to single administraƟve domain, a RM can operate in single domain only (see Figure 4.1). It can
however perform inter-domain operaƟon, e.g. by peering with RM in adjecent domains. All RMs in single domain
must be supervised by single RO, which is as well single domain scoped, yet it requires the ability to perfom inter-
domain operaƟons. The ROs which has no direct RM associaƟons but controls one or more other ROs in a tree
model (see RO Parent on Figure 4.1), are considered to be inter-domain enƟƟes, as their range of responsibility
is not linked with single domain only.

The proposed architecture aims to scale easily: one can always add new RO(s) and/or new RMs under any RO,
as needs arise. Further, the mechanisms proposed in this document will enable new installaƟons to easily adopt
and extendwhole FELIX infrastructure. The preferred way of communicaƟon between ROs is a treemodel, where
ROs follow the defined hierarchy in order to contact each other. We foresee that horizontal communicaƟon will
be limited. OpƟonally, however, the architecture permits a peering model, where ROs can contact each other
directly, without the need of inter-mediaƟon. The choice of communicaƟon manner is up to the implementaƟon
and the pracƟcal needs of specific deployments of the FELIX architecture.

In the FELIX architecture, a user of the federated testbed infrastructure always sends the requests to an RO
(typically using a graphical user interface or through the use of a programmaƟc interface) and does not communi-
cate directly with RMs of any domain. This unique entry point into the RO hierarchy guarantees that the request
will be processed (and delegated as needed) by the most appropriate ROs and RMs. This design approach aims
to ensure that the valid administraƟve domains and resource pools will be designated to implement a user slice.
As each user slice may comprised of a set of resources which are of different type, mulƟple RMs, either in a single
or mulƟple domains, may be involved in realizaƟon of user request.

User Space The User Space consists of any tools and applicaƟons that a user wants to deploy to control
a slice or execute parƟcular operaƟons within it. The selecƟon of tools is completely dependent on the user
requirements and his/her decisions and is out of the FELIXmanagement framework scope. Each user slice defines
the boundaries of the user-controlled environment. The slice also guarantees isolaƟon of this environment from
the physical resources and other user slices. As many use cases scenarios discussed in [FELIXD2.1] require SDN
resources to be commiƩed into a slice, an example of a user toolmay be anOpenFlow controller, whichwill enable
users to configure SDN flows within a slice according to their needs. Another example is, say, an IT Controller,
which can provide remote access to servers, clusters or data storage faciliƟes included in a slice.

The following secƟons explain inmore detail the funcƟonality and business logic of the parƟcular components
of the architecture in both the FELIX and User Spaces, and their dependencies.

4.1 Concepts and DefiniƟons
This secƟon revisits the concepts and definiƟons introduced in [20] as we proceed in describing the overall FELIX
architecture and the core funcƟonal building blocks.

We briefly introduce the main concepts related to the physical distributed infrastructure of the FELIX facility
which is organized into mulƟple administraƟve domains. Basically, an AdministraƟve Domain is a service secu-
rity provider that holds security repositories and authenƟcates and authorizes clients with credenƟals safely and
easily. In the FELIX infrastructure, every administraƟve domain could be controlled and managed by different ar-
chitectures and interfaces: SoŌware Defined Networking (SDN) [17], [11] and Transit Network Service (TNS) such
as Network Services Interface ConnecƟon Service (NSI-CS)[22], [8]. The "FELIX physical network infrastructure
concepts" subsecƟon is consequently focused on these technologies.

In the FELIX vision, the interconnected experimental faciliƟes are federated, so that mulƟple virtual infras-
tructures spanning across several domains can be delivered to the user as isolated set of integrated resources.
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The FELIX architecture adopts Slice-based FederaƟon (SF) to fulfil this requirement. The "Slice-based FederaƟon
concepts" subsecƟon presents the key concepts related to slice-based federaƟon and some details about the
architectural components which will be imported and enhanced in the FELIX architecture.

Finally, the "FELIX architecture definiƟons" subsecƟon provides the terminology adopted to idenƟfy the main
elements of the FELIX architecture, which are conceptually based on the previous concepts and definiƟons (i.e
SDN, TNS, SF). This subsecƟon could be used as reference when reading the detailed descripƟon of each single
component in the next chapters.

4.1.1 FELIX physical network infrastructure concepts

FELIX infrastructure includes distributed faciliƟes able to manage and control compuƟng/storage (CR) and net-
working (NR) resources. Each network facility can be organized as a set of SDN-controlled network domains. The
different experimental faciliƟes are interconnected through TNS-controlled network domains with the scope to
enable the inter-domain connecƟvity.

SoŌware Defined Networking (SDN) is a relevant new term for the programmable networks paradigm, as
discussed in [17]. In short, SDN refers to the ability to use soŌware to program individual network devices dy-
namically and therefore control the behaviour of the network as a whole [15]. The separaƟon of the network
control plane, which oversees several devices, from the forwarding plane (the data plane) serves as a foundaƟon
for a dynamic, easily manageable, cost-effecƟve, and adaptable architecture. As the network control becomes
directly programmable, the underlying infrastructure can be abstracted for applicaƟons and network services,
reducing the dependency on the manufacturer. In many cases, SDN is idenƟfied with the use of a parƟcular pro-
tocol (e.g. OpenFlow) to allow the communicaƟon between the control plane and the data plane, but the truth
of the maƩer is that SDN concepts are far more general. For the parƟcular SDN definiƟon advocated by the Open
Networking FoundaƟon please see [11].

The basic unit of the FELIX architecture is the concept of resources (NR & CR): network (switches, routers,
opƟcal devices..) and computaƟonal (physical server or VMs, storage, blocks, objects…) resources. The SDN
mechanisms are adopted to organize the physical network resources in a variety of SDN zones. In FELIX termi-
nology, a SDN zone is a set of resources grouped for homogeneity of technologies and/or control tools and/or
interfaces (e.g. L2 switching zone, opƟcal switching zone, OpenFlow protocol controlled zone or other transit
domain zone with a control interface). The major goal of defining SDN zones is to implement appropriate policies
for the availability, scalability and control of different resources in a SDN island. An SDN island is defined as a set
of virtualized NR and CR under the same administraƟve ownership or control (an administraƟve domain).

The different SDN islands can be grouped in the Future Internet (FI) experimental faciliƟes (or SDN-controlled
network domains). The FI experimental faciliƟes are controlled by dedicated soŌware, which exposes interfaces
which can be used by a federaƟon framework to orchestrate resources in a mulƟ-domain environment.

Finally, the overall FELIX infrastructure is composed by several (distributed and federated) FI experimental
faciliƟes physically interconnected using TNS-controlled domains.

In FELIX architecture, the network domain (or network domains) which connects the distributed experimen-
tal faciliƟes will use the Transit Network Service (TNS) to offer the automated and on-demand control of the
connecƟvity services and, opƟonally, enable inter-domain topology exchanges. NSI-CS is one of the TNS which
can be used in the FELIX implementaƟon. The NSI is under standardizaƟonwithin the Open Grid Forum (OGF) NSI
Working Group, which has also defined a general framework to deliver network infrastructures as a service and a
ConnecƟon Service protocol to enable the automated creaƟon of network circuits in mulƟple and heterogeneous
domains. Moreover, the NSI framework supports the federaƟon concepts, as fully described in the "Transit Net-
work Resource Manager" secƟon of this document. In FELIX, the Transit Network Service protocol will be used to
orchestrate the resources in the TNS-controlled network domain and establish inter-domains connecƟvity with a
specific granularity. This approach allows to create experiments spanning resources from different domains and
conƟnents and requires the deployment of an Agents of TNS within islands and TNS-controlled network domain.
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The Figure 4.2 gives a graphical representaƟon of the FELIX network infrastructure concepts.

Figure 4.2: FELIX physical network infrastructure concepts

4.1.2 Slice-based FederaƟon (SF) concepts

In FELIX, the administraƟve domains corresponding to the distributed infrastructures are federated to compose
mulƟple and isolated FI experimental faciliƟes. SFA and NSI Framework are among the architectures which can
support FELIX system requirements.

SFA v2.0 specificaƟon [10] is one of the SF protocol and interface which can be used in the FELIX implemen-
taƟon. SFA v2.0 defines a control framework architecture to allow a federaƟon of slice-based network substrates
to interoperate. In this context, SFA idenƟfies two authority roles for the control and management of a federated
system:

• Management Authority (MA): responsible for a subset of physical components and ensures the proper
behaviour of the components (that is, that hose execute the resource allocaƟon accordingly)

• Slice Authority (SA): responsible for the registraƟon and control of one or more slices as well as managing
the user access to the slices

In FELIX, SFA can be used to provide a federaƟon framework between the exisƟng testbed management
plaƞorms deployed at partners’ premises.

The main concepts in the SFA framework are summarized in Table 4.1.

SFA key concept DescripƟon
Resource Resources include physical resources (e.g., CPU, memory, disk, bandwidth),

logical resources (e.g., file descriptors, port numbers), or syntheƟc resources
(e.g., packet forwarding fast paths). Resources are described through a
resource specificaƟon (RSpec), typically expressed in XML format following
specific schemas. RSpecs are used to list (adverƟsement RSpec), reserve
(request RSpecs), or describe reserved resources (manifest RSpecs) [5], [4]
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Component Components are the primary building blocks of the SFA architecture (e.g., an
edge computer, a customizable router, a programmable access-point, etc..).
Every component can encapsulate a set of homogeneous or heterogeneous
resources, depending on the nature of the component.

Aggregate An Aggregate is a set of components which are under the authority of the
same MA, which also governs the aggregate.

Aggregate Manager An Aggregate Manager is a logical element which controls and manages an
aggregate. If the aggregate contains a single component, the Aggregate
Manager could be also called Component Manager.

Sliver A sliver can be considered as a resource container, which guarantees the
isolaƟon from every other sliver belonging to the same component. This
requirement can be fulfilled via component virtualizaƟon or parƟƟoning the
component into disƟnct resource sets. Either way, the user is granted a sliver
of the component.

Slice A user-defined subset of virtual networking and compuƟng resources,
created from the physical resources available in federated testbeds. A slice
has the basic property of being isolated from other slices defined over the
same physical resources, and being dynamically extensible across mulƟple
testbeds. On top of each slice, a specific set of control tools can be
instanƟated, depending on the specific domains it traverses.

Table 4.1: SFA main concepts

The slice concept is adopted in FELIX with reference to the experimental faciliƟes to be provided on top of the
FELIX physical infrastructure. All the FI experimental faciliƟes will be controlled programmaƟcally through well-
defined interfaces by the Slice-based federaƟon framework, which orchestrates resources in a mulƟ-domain en-
vironment. These faciliƟes, extending the slice concept in SFA, are composed of compute and network resources
(CR and NR) belonging to distributed SDN islands in FELIX infrastructure, interconnected via TNS-controlled do-
mains (Figure 4.3). Moreover, a slice can collect resources of different types from several SDN zones within a
single SDN island.

The SFA RSpec used in the requests is the naƟve RSpec format of PlanetLab AMs. As of January 2012, Plan-
etLab supports GENI v3 RSpecs, which is the recommended RSpec to use in GENI, as [5], [4].

Figure 4.3: FELIX infrastructure key concepts

A fundamental element defined in the SFA framework is the Aggregate Manager (or Component Manager)
which exports a well-defined and (remotely) accessible interface. FELIX architecture adopts and extends the SFA
concept of Aggregate Manager with the introducƟon of architectural elements able to manage and control the
FELIX-specific resources, in parƟcular SDN and TNS resources (NR). In the FELIX terminology, these managers
will be (generically) called Resource Managers and will expose well-defined interfaces for resource discovering
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and reservaƟon. An example of SFA-based interface is the GENI Aggregate Manager API [4] which provides stan-
dardized reservaƟon mechanisms. This interface is directly derived from the SFA 2.0 standard and is currently
implemented by several GENI projects (e.g., PlanetLab, ProtoGENI, ExoGENI, InstaGENI).

On the other hand, while the NSI CS (ConnecƟon Service) is an interface to request provisioning of a network
connecƟon, NSI Framework itself is a general framework to reserve resources in advance, and manage provi-
sioning of the resources during the reserved period. In the architecture of the NSI, each provider’s resource is
managed by a Network Service Agent (NSA). The NSI is the service interface between NSAs. An NSA can take
on the role of a requester, a provider, or both (an aggregator). MulƟple NSAs form a recursive framework of
requesters and providers. Requests can be propagated through this framework of NSAs using a tree or chain
workflow. An aggregator NSA can aggregate resources frommulƟple children NSAs and provide resources to the
requester. Aggregator NSA corresponds to RO in the FELIX architecture. The Figure 4.4 shows the overview of
NSI Framework.

Figure 4.4: NSI Framework

NSI Framework supports advance reservaƟon of resources. An NSI reservaƟon is created using a two-phase
commit process. In the first phase (reserve) the availability of the requested resources is checked; if the resources
are available they are held. In the second phase (commit) the requester has the choice to either commit or abort
the reservaƟon that was held in the first phase. By this mechanism, requester can search available resources
while holding some of resources which availability has already been confirmed. If a requester fails to commit a
held reservaƟon aŌer a certain period of Ɵme, the provider may Ɵme out the reservaƟon and the held resources
can be released. Using this two-phase commit process, modificaƟon of a reservaƟon is supported. During a
reservaƟon period, actual provisioning (acƟvaƟon) of resources can be controlled from the user. By sending a
provision request, the resources are acƟvated, and by sending a release request the resources are de-acƟvated.
De-acƟvated resources can be re-acƟvated by re-sending provision request.

In NSI, the concept of Service DefiniƟon (SD) is used to define characterisƟcs of resources. In several SD have
been defined for ConnecƟon Service in the NSI-CS protocol. By defining SD for computers and storages, those
resources can be also managed by NSI Framework.
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4.1.3 FELIX architecture definiƟons

This secƟon provides a brief summary of the main architectural elements, which will be described in the next
chapters. Some of these components (e.g. the Resource Managers) are conceptually derived from the SFA archi-
tecture and NSI Framework, while further new elements (e.g. the Resource Orchestrator) have been introduced
to add innovaƟve features like automated resource coordinaƟon and end-to-end service provisioning.

Table 4.2 gives an overview of the FELIX architectural components.

Architectural component DescripƟon
Resource Orchestrator
(RO)

Architectural component responsible for the orchestraƟon of the end-to-end,
mulƟ-domain service in the federated infrastructure. It coordinates the
reservaƟon and allocaƟon of heterogeneous network and compute resources
in each segment. Those resources are described through a common language,
which can represent CR and NR characterisƟcs and their constraints.

Resource Manager (RM) Component in charge of controlling a specific type of resource, being the
equivalent of the SFA Aggregate Manager and NSA in NSI Framework. FELIX
defines two types of RMs: the TN RM and the SDN RM, to manage TN and SDN
virtual resources respecƟvely. In parƟcular, the SDN RM will control the
OpenFlow-based L2 resource in the access domains, while the TN RM will
interact with the TNS-controlled domain for on-demand provisioning of
connecƟvity in the transit segment.

Monitoring framework Collects and manages monitoring data from infrastructure slices and
experiments, including informaƟon retrieved from the different SDN islands
and from the transit domains, in terms of performance of the established
connecƟvity services. The monitoring framework is expected to interact with
the Resource Orchestrator for providing aggregated measurements.

Slice Resource Controller Element in charge of managing the creaƟon, modificaƟon and deleƟon of slices
related to the experiments (including all funcƟonality, APIs and applicaƟons).

Table 4.2: FELIX architectural components

4.2 Architectural Building Blocks
This chapter defines the roles, responsibiliƟes and dependency of the FELIX framework components. It is divided
into two secƟons, which focuses on FELIX and User Space and funcƟons available in parƟcular spaces. In general
the FELIX Space responsibility is to manage resources and provide slice to the end users, while User Space tools
allows end users to control their slice environment and execute their scenarios.

4.2.1 Management and OrchestraƟon Architecture

The Management and OrchestraƟon components instanƟates the FELIX Space environment, providing end users
and administrators with tools to manage the resources, maintain them and implement users' slices over them.
This space consist of the following main components:

• Resource Orchestrator

• Resource Manager, i.e. Transit Network Resource Manager, SDN Resource Manager, and CompuƟng Re-
sources Manager

• Monitoring

• User Access/GUI

The components are explained in the following chapters.
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4.2.1.1 Resource Orchestrator
The FELIX Resource Orchestrator (RO) is a key funcƟonal element of the FELIX architecture, as a whole, and the
centerpiece of the management and orchestraƟon system design, in parƟcular. In short, the FELIX Resource Or-
chestrator is responsible for orchestraƟng the end-to-end network service and resource reservaƟons, possibly
including relevant CR services, for the enƟre FELIX federated infrastructure, i.e. intra- and inter-testbed wise. We
aim for an RO design that can coordinate end-to-end resource and service provisioning in a technology agnos-
Ɵc way. Resource provisioning ensures that all required intra- and inter-testbed resources are delivered to the
requesƟng user for the specified period at parƟcular locaƟons.

We consider that the RO operates over a federated testbed infrastructure which consists of "SDN islands",
such as the OpenFlow-based research testbeds in Europe, interconnected via what we refer to as "Transit Net-
work Service (TNS) controlled domains", i.e. testbed interconnecƟon faciliƟes which are compaƟble with the
Network Services Interface (NSI) architecture [8]. Each SDN islandmay have several SDN Zones. Given these core
consƟtuents, the FELIX federated infrastructure resources must be orchestrated in order to serve the use cases
defined in [20]. In order to do so, we consider that an FELIX end-to-end service, e.g. a video stream, lives within
a cross-island slice.

The key funcƟons of the FELIX RO can be summarized as follows:

• The RO manages the different FI experimental facility user in terms of resource and data access policies.

• The RO mediates between the user (e.g. an experimenter wishing to employ the FELIX federated infras-
tructure via the use of a portal) and the technology-specific Resource Managers (RMs). We expect to have
different RMs which will handle, for example, technology-dependent aspects in SDN domains and transit
network domains (TN RM), as well as compute and storage resources (CR RM). As part of this mediaƟon,
the FELIX RO will be engaged in the creaƟon (provisioning), maintenance, monitoring, and deleƟon (re-
lease) of the used resources and slices.

• The RO maintains a high-level (abstract), cross-island topological view, which summarizes the different
(CR and NR) resources available along with their inter-connecƟons. This topology view is iniƟalized and
updated by the underlying Resource Managers, thus implemenƟng a distributed hierarchical resource dis-
covery funcƟon.

• The RO determines which domains andwhich inter-domain resources should be used to instanƟate a given
end-to-end service for a FI experimental facility user's slice. For example, based on a user request for a
given type of service to be instanƟated in two remote islands, the FELIX RO determines which specific SDN
Zones or resource domains should be involved.

• The RO coordinates and ensures that the correct sequence of acƟons takes place with respect to the op-
eraƟon the technology-specific Resource Managers. This includes the provisioning of the slice resources
and as per the user requirements.

• TheROcollects and correlates alarmson resources, on a per-slice basis, andproceedswith reporƟng/noƟfying
the corresponding users on a per slice basis.

We note that the FELIX Resource Orchestrator operaƟon is orthogonal to the datapath operaƟon of different
slices and the traffic of their respecƟve FI experimental facility users.

The FELIX RO exposes all its funcƟons through southbound and northbound interfaces, called FELIX Resource
Interface, and inspired to the Slicebased FederaƟon Architecture.

These interfaces allow us to manage resources from different experimental faciliƟes in a common abstracted
manner, using the resource descripƟon language [9] developed for the SFA [10] which can capture the charac-
terisƟcs of a given technology domain.
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Figure 4.5: FELIX Resource Orchestrator posiƟoning in the FELIX architecture.

With reference to a commonly accepted characterizaƟon of the IT service life cycle [6], the following phases
can be idenƟfied for a service that requires network and compute resources, as discussed in the use cases pre-
sented in [20]:

1. Service Design and Planning, during which the service characterisƟcs, template resources, capacity and
availability requirements are idenƟfied. In addiƟon, this phase includes the detailed descripƟon of the
relaƟonships between the modules and components that will be involved ;

2. Service Provisioning andDelivery, duringwhich the exact resources and correlaƟons among themare put in
place (delivered), the specific configuraƟon items implemented and the overall service validated through
tesƟng before being accepted for the subsequent operaƟon phase. ValidaƟon at this step may consist of
status checks on resources (e.g. VMs up and running, query status on circuits or L2 data paths, etc.).

3. Service Run-Ɵme OperaƟon, during which the service is acƟve and monitored to react to any potenƟal
event based on its configured characterisƟcs (dynamic updates, or more tradiƟonally incidents, problems,
requests). Monitoring is a key funcƟon in this phase since it allows to correlate service performances
against a set of Service Level Agreements (SLA). Due to the different granularity of the monitoring data
coming from different technologies in the data plane, an orchestraƟon funcƟon is also needed to harmo-
nize measures into a single monitoring framework and e.g. to react/orchestrate upon monitoring events
like up/down events, thresholds crossing, etc. For example, in case of a L2 switching domain controlled
via OpenFlow, the flow installaƟon task with matching of a given classificaƟon tuple lives enƟrely in this
operaƟon phase as one of the key acƟviƟes under the ownership of a SDN controller; similarly, a resource
scaling up/down or migraƟon from one island to another due to specific events like faults, Ɵme of the day,
etc. are examples of run-Ɵme operaƟons possibly automated and without extra delivery of resources.

4. Service TerminaƟon, during which the service is terminated and all associated resources are released in
order to be available for other uses.

The resource orchestrator is involved in the following three phases: Service Design and Planning; Service
Provisioning and Delivery; and Service terminaƟon. The FELIX RO does not play any major role in actual service
operaƟon.

The FELIX RO role in an end-to-end service life cycle is beƩer illustrated via a walk through in an exemplary
process flow. We start with the Service Design and Planning phase as follows. Assume that an experimenter
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(i.e. a user of the FELIX federated infrastructure) defines through the FELIX portal a cloud service specificaƟon.
For example, the user could detail the type and version of the operaƟng system and soŌware applicaƟons to
be used, the amount of storage required, the compuƟng resources needed, as well as their inter-relaƟons, such
as which applicaƟons run on which resources. In addiƟon to this, the user will need to describe the desired
connecƟvity between the different components of the cloud service, i.e. define certain network parameters
that are deemed criƟcal (and let the FELIX architecture determine the remaining parameters). Finally, the user
could specify the connecƟvity between the defined cloud service and the user. The cloud service descripƟonmay
include QoS parameters like bandwidth and delay, or service survivability requirements (with an impact on the
recovery strategy to be adopted at the network level). Also, the user can specify automated elasƟcity rules that
idenƟfy the modificaƟons to be applied in the cloud and network service topology under certain condiƟons (e.g.
what should be the reacƟon in case of changes in the traffic load or disasters).

The FELIX RO elaborates the requests received from the portal and determines the sequence of resource
domains and the characterisƟcs of the related resources which will be required to create the end-to-end service
in terms of compuƟng, storage, and connecƟvity services. During the Service Provisioning and Delivery phase
the RO interacts with the technology-specific Resource Managers to request the allocaƟon of the assorted re-
sources in the FI experimental faciliƟes. Therefore, each Resource Manager implements the decomposiƟon and
domain-specific configuraƟon of the different abstract resources into specific resources of the SDN zone (again,
this includes network, storage and compute resources) and of the transit network. In order to achieve this, each
RM has its own decision enƟƟes (internal or delegated to a legacy technology funcƟon) to achieve beƩer uƟliza-
Ɵon of the whole infrastructure under control. Once the request is successfully concluded, the FELIX RO triggers
the allocaƟon and acƟvaƟon of the requested resources. This commit step is also mediated by the different in-
volved FELIX RMs, and uses the technology-specific interfaces exposed by the different domains, like NSI for the
transit domains, OpenFlow for the SDN domains, the API exposed by the CloudManagement System responsible
for each involved data center for the CR domains.

In order to cope with the potenƟal applicability of the FELIX architecture at large scale, the FELIX Resource
Orchestrator is designed to be recursive, and seamlessly interface to a user portal or another parent RO. Thismode
of operaƟon allows for establishing a hierarchy of ROs as illustrated in Figure 4.6. The parent RO coordinates the
different child ROs (aƩached to their RMs) taking care of the overall supervision of the summarized network and
CR topology exposed by the different ROs.

As Figure 4.6 illustrates, the user portal can alternaƟvely decide to connect to any RO instance involved in
the planned service (e.g. the RO for the source domain, or the RO for the desƟnaƟon domain, or even the parent
RO).

In order to provide the possibility to transparently stack ROs hierarchically, it will be most useful to employ
the same API on all ROs. Specifically, child-ROs shall not have a different northbound API than their parents.
This recursiveness enables transparent changing of the underlying RO instances and enables the RO clients to
interface with all ROs in the same way, no maƩer which granularity they encompass.

We expect that the mechanisms for opƟmizing the service and slice state consistency across the various
ROs will be refined in further iteraƟons of the FELIX architecture based on implementaƟon and experimentaƟon
experiences as the project progresses.

Moreover, the FELIX RO should cooperate with the other FELIX architectural elements (e.g. GUI/Portal) to
cover all the security aspects related to an AuthenƟcaƟon AuthorizaƟon Infrastructure (AAI). In short, it should
confirm the user's idenƟty (authenƟcaƟon) and associate the idenƟtywith rights and permissions (authorizaƟon).
Through the FELIX framework, users can access services in a secure and confidenƟal manner, simply by using e.g.
their credenƟals or cerƟficates. In otherwords and as a general requirement, FELIX (as amulƟ-user service) needs
some mechanism to manage who can access the services and which acƟons each user can perform.

Orthogonal to the hierarchical design of the FELIX RO, all enƟƟes blend into a AAI (AuthenƟcaƟon Authori-
saƟon Infrastructure). This architecture ensures, that all operaƟons on the RO and its sub-enƟƟes are only per-
formed by authorized actors. These actors can be administraƟve/operaƟonal personal, experimenters or auto-
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Figure 4.6: Hierarchical Resource Orchestrator in FELIX

mated actors. In order to secure the system against accidental misuse and malicious aƩackers, FELIX implements
funcƟons for authenƟcaƟon, authorizaƟon and accounƟng. For authenƟcaƟon, FELIX will use a cerƟficate-based
infrastructure and provide a CA (CerƟficate Authority) enƟty. Each enƟty in the FELIX architecture can choose to
trust one or more CAs. When one of these enƟƟes needs authenƟcate a request, the cerƟficate sent by the client
can be verified against the CA's cerƟficate. Only if the client's cerƟficate was signed by a trusted CA, authenƟca-
Ɵon succeeds.

AŌer establishing, that the client is who it claims to be, the requested operaƟons need to be authorized. In
order to verify privileges of actors, the CA issues credenƟals. CredenƟals are signed documents which contain
a mapping from the signing enƟty to an actor. Associated to this mapping is a set of roles which specify which
operaƟons may be performed by the targeted actor. To enable enƟƟes to delegate their privileges to sub-enƟƟes
(e.g. to perform acƟons which are performed by lower layers in the hierarchy), credenƟals can also be chained.
Usually the CA issues cerƟficates to trusted members/actors, thus building the start of a trust chain. In order to
understand the chaining, let's consider the following example: The CA trusts Actor A, A trusts B and C trusts the
CA. From those trust statements we can infer that C trusts B.

The FELIX project decided to support two different types of users: the administrators and the experimenters.
Each role has a well-defined set of allowed acƟons and operaƟons. To fulfill the security requirement, the FELIX
RO could provide e.g. different interfaces for the different users and roles, or could adopt a sort of role hierarchy
which allows some operaƟons (e.g. create new resources) for the higher level, the administrator, and others (e.g.
reserve available resources) for the lower level, the experimenter.

Each enƟty in the FELIX RO is responsible for authenƟcaƟng and authorizing requests, thus safeguarding
against unauthorized usage. As a third pillar of security, each enƟty needs to log acƟons associated with the
performing actor. This accounƟng ensures that all acƟons can be retraced and malicious users can charged. Also,
the data can be used to reenact aƩacks to learn from it and improve the system.

4.2.1.2 Transit Network Resource Manager
The responsibility of the Transit Network Resource Manager (TN RM) is to support the FELIX architecture with
mechanisms to implement network connecƟvity in parƟcular domains and between them.

In order to deliver the network services in FELIX environment, the TN RM must be integrated with its south-
bound interfaces with a parƟcular network domain. Such a domain can use different L1/L2 technologies, can be
controlled by a Network Management System (NMS) or some specific interfaces or protocols. Since this is up to
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individual case, it is out of the scope of this deliverable and is considered as purely implementaƟon issue. It is in
responsibility of engineers and developers to assure proper integraƟon of TN RM with a domain at the moment
of deployment of FELIX system.

The TN RM must communicate with its RO, in order to receive requests and to noƟfy RO about success or
failure events. Single TN RM must be in relaƟon to single RO only, while at the same Ɵme single RO can have
mulƟple TN RMs under his command. A single TN RM is responsible for parƟcular network resources, which can
be called a network domain, and are commonly managed by single enƟty, i.e. network administrator or NMS.

TN RM usually manages L1/L2 transport networks (rarely L3) which are build of switching devices using
frames/packets switching or circuit switching technologies. In parƟcular example of FELIX, they will mostly be
Ethernet networks, with assistance of e.g. MPLS protocols. The main difference from SDN RM is that TNRM is
not using the reacƟve paradigm of SoŌware Defined Networking and controls the resources by configuring e.g.
VLANs or MPLS paths. TN RM is usually assisted here by local NMS, which may be vendor or domain specific
soluƟon.

A single administraƟve domain managed by an TN RM may be a complex one, which means that it contains
not only transit network resources, but also other types of resources. Those resources will be under a control
of different, coexisƟng RMs (e.g. SDN or CR), but sƟll under responsibility of the same RO, as depicted on Figure
4.7.

Figure 4.7: mulƟple RMs in single domain

In the example on Figure 4.7, the same domain has both SDN resources, managed by SDN RM, and transit
network resources, managed by TN RM. This situaƟon is considered to be a common case in FELIX deployment,
and therefore a proper interacƟon mechanisms between RMs are defined. There are idenƟfied several cases of
deployment of TN RM component:

1. in purely transit network environment

2. in mixed environment (e.g. coexistence with SDN resources under independent management); in such
case two opƟons are possible:

(a) TN RM sub-domain has no sƟtching point with other sub-domains -- in such case interacƟon is not re-
quired as there are no common elements of the infrastructure and the sub-domain can't use others'
resources
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(b) TN RM-sub-domain has a sƟtching points with other sub-domains -- a slices may require to use re-
sources frommulƟple sub-domains, which as a consequence requires addiƟonal interacƟon process
between RMs (either direct or via RO)

The interacƟon between RMs may be directly implemented as east/west bound interfaces, or be imple-
mented with intermediaƟng RO using exisƟng interfaces. The second opƟons is preferred for implementaƟon,
as it minimizes the amount of implementaƟon efforts required for each RM by eliminaƟng addiƟonal specific
interfaces. In general the RO should be responsible to delegate specific requests to proper RMs under his man-
agement, so that each RM has to perform acƟons only on resources, which are in this RM control. This way e.g.
an TN RM does not need to be aware of SDN resources and vice versa, a SDN RM does not need to know about
transit resources in a domain. Themanagement of sƟtching points between resources types are the key to proper
execuƟon of the request and realizaƟon of the reservaƟons. In domain with mulƟple RM, it is also possible that
not all RMs are involved in parƟcular reservaƟon, as not all types of resources are used. E.g. if an SDN + transit
network domain is used only for transport L2 traffic, the SDN resources may be not used, while TN RM will be
asked to create a specific edge-to-edge connecƟon through the domain.

The TN RM must have knowledge and ability to communicate with other TN RMs, controlling the adjacent
domains, in order to perform mulƟ domain reservaƟons, as depicted on Figure 4.8.

Figure 4.8: inter-domain communicaƟon requirement

A connecƟon passing domains A, B, and C requires synchronizaƟon of efforts and configuraƟon of resources
in three different domains, while each domain is under control of independent NMS, may use different technol-
ogy and have different policies. In order to implement such circuits all TN RMs must collaborate by exchanging
informaƟon about their resources availability and configuraƟon technical details (e.g. common VLAN or LSP iden-
Ɵfier). From the architecture point of view, it is unimportant whether TN RMs exchangemessages directly or via a
ROs hierarchical tree, and whether TN RMs can contact any or only directly adjacent TN RM. This parƟcular issues
can be decided during the implementaƟon process. Having a direct communicaƟon channels between TN RMs
in different administraƟve domains may raise several issues, mostly policy and security related. Also RO respon-
sible for different domains may be interested about acƟons taken by its parƟcular RMs, which were requested by
neighbor domains. Using a ROs as an intermediate point for communicaƟons between RMswill givemore control
over the interacƟon process, however this approach may increase the Ɵme required for communicaƟon. FELIX is
keen to reuse exisƟng soŌware and tools, whichmay have specific soluƟons for this case and the implementaƟon
of the system will rely on its mechanisms. E.g. one of the candidates for implementaƟon of TN RM interfaces is
OGF NSI ConnecƟon Service protocol, which will require TN RMs to behave as BoD services, which can request
resources from each other (east/west bound interfaces).

The TN RM must have knowledge on its own resources, as well as an overview of all other transit network
domains and its connecƟvity, in order to enable global inter-domain path finding and predicƟon of resources
usage. Since TN RM will be mostly used in inter-domain context, a proper mechanisms must be implemented
to share such knowledge between TN RMs in a dynamic manner. The shared informaƟon should be abstracted,
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so that it not discover domain internals (e.g. private informaƟon or key elements related to the security of the
network) and give at least an overview of reachability and interconnecƟvity informaƟon. Such informaƟon should
include abstracted interfaces where connecƟon can be terminated, throughput of parƟcular exposed links, and
inter-domain connecƟvity informaƟon. In the simplest cases a single domain can be represented by a cloud
(full mesh topology) with abstracted interfaces providing the links to adjacent domains and/or enƟƟes to which
service can be delivered (usually parƟcular interfaces or services on switches or routers within a domain, from
where service can be delivered to parƟcular users, applicaƟons or installaƟons). The Figure 4.9 depicts in very
general way an example of such abstracƟon.

Figure 4.9: General example of topology abstracƟon

Relaying on abstracted topology view a single TN RMwill be able to define a route of a parƟcular inter-domain
L1/L2 circuit using path finding funcƟonality. TN RMs are assigned to parƟcular domains, and this informaƟon
can be stored either in topology data or in separate lookup service. Therefore having known which domains
will be involved in implementaƟon of a single reservaƟon, an TN RM will known which other TN RMs should be
contacted and how.

The TNRMmust be able to collaboratewith domains, which are not under FELIX frameworkmanagement, i.e.
network transport domains. Therefore it is evenmore important for TN RM to implement standardized interfaces
for inter-domain reservaƟon. An example of such situaƟon is depicted on Figure 4.10.

Figure 4.10: Network reservaƟon through non-FELIX domain.
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The most leŌ and right domains are under FELIX jurisdicƟon and includes both SDN RM and TN RM under
control of proper ROs. The user request is forwarded to those RMs via ROs hierarchical tree. Themiddle domain is
a network transport domain which is not aware of FELIX framework, has no TN RM and RO assigned to it. In order
to implement a producƟon connecƟon between edge domains, the TN RM in both of themmust implement some
standardized interfaces, which will enable them to communicate with the middle domain NMS. Such a candidate
may be for example an OGF NSI CS, previously menƟoned. In the parƟcular case depicted on Figure 4.10, the
most leŌ TN RM is responsible for path finding, which includes also non-FELIX resources, and then forward the
request to middle and right domain. One can noƟce that RO3 does not request a transit network service from
its TN RM. This is caused by the fact that in this example it was assumed that a NSI like service was used, where
circuit creaƟon is requested at single point only (at RO2 TN RM) and it is responsible for whole inter-domain circuit
creaƟon. The communicaƟon is performed directly between TN RMs or adequate instances (NMS of the middle
domain here). Otherwise the circuit could not be created as FELIX is not explicitly controlling the middle domain
and ROs cannot communicate with it to send a request.

In order to manage the reservaƟons, especially in distributed manner, the TN RMmust have an internal state
machine for reservaƟons. There are idenƟfied tree state machines for reservaƟon (RSM), provision (PSM), and
life Ɵme (LSM). The state machines is depicted on Figure 4.11, Figure 4.12, and Figure 4.13.

Figure 4.11: TN RM reservaƟon state machine

By the RSM, reservaƟon is made by holding resources between start Ɵme and end Ɵme of the reservaƟon.
The resources held are made available when the PSM is in Provisioned state, and a data plane connecƟon is
acƟvated. The resources are made available if and only if the PSM is in the Provisioned state AND the start Ɵme
< current Ɵme < end Ɵme.

The PSM is designed to allow resources to be repeatedly provisioned and released in data plane, while being
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Figure 4.12: TN RM provision state machine

Figure 4.13: TN RM lifecycle state machine

sƟll booked under parƟcular reservaƟon. The PSM transits between the Provisioned and the Released stable
states, through intermediate transiƟon states. An instance of the PSM is created when an iniƟal reservaƟon is
commiƩed, and at that Ɵme it starts in the Released state. The PSM transits states are independent of the state of
the RSM. Note that the transiƟon to the Provisioned state is necessary, but on its own is not sufficient to acƟvate
the resources (i.e. made available).

The LSM is used for processing events related to terminate the reservaƟon, i.e. on request from external
enƟƟes (like end users).

The FELIX TN RM should cooperate with supervising RO and peering TN RMs and thus obey the FELIX secu-
rity aspects related to an AuthenƟcaƟon AuthorizaƟon Infrastructure (AAI). There must be established a trusted
relaƟonship between parƟcular TN RM and all other communicaƟng components, the communicaƟon must be
secured and sender/receiver should be able to be uniquely authenƟcated. The mechanisms should also support
authorisaƟon mechanism, restricƟng access to some TN RM funcƟonality basing on implemented policy. The
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FELIX framework will provide a dedicated AAI infrastructure which enforce the proper security mechanism to be
used no only by TN RM by also all framework components. FELIX will use a cerƟficate-based infrastructure and
provide a CA (CerƟficate Authority) enƟty. TN RM needs to log taken acƟons and an enƟty and/or user associated
with them. This very basic form of accounƟng ensures that all acƟons can be retraced and malicious users can
charged. Also, the data can be used to reenact aƩacks to learn from it and improve the system security.

4.2.1.3 SDN Resource Manager
The SDN Resources Manager for the FELIX project will provide it the mechanisms to manage the network ar-
chitecture inside a domain with SDN-enabled hardware (e.g. OpenFlow switches and routers) it is important to
noƟce that the SDN RM belongs to the FELIX Space.

In SDN RM scope, FELIX does not care about the network physical resources. Simplifying, in an SDN domain,
like an OpenFlow network, the users (experimenters) can control the network behaviour by acƟvely updaƟng the
flow tables of the network elements. This update is usually done by a controller, a soŌware tool that analyses
the incoming traffic to a network resource and decides where to send it according to the user’s will.

The issues start arising when several users want to use the same resources. It is then not obvious how the
related traffic is isolated, so different controllers can only manage only their respecƟve packets. In this architec-
ture, this is achieved by deploying a special purpose controller between the network elements and the users’
controllers. This special purpose controller acts as a proxy deriving each user’s traffic to its own controller. Each
user has his traffic assigned to a flowspace, so it is disƟnguished from other users’ traffic. This flowspace can be
a range of source or desƟnaƟon IPs or MAC addresses, TCP or UDP ports, etc.. One way to separate the traffic
is assigning a VLAN tag to each packet. In this case, the special purpose controller inspects the incoming packet,
idenƟfies the VLAN tag and sends it to the corresponding user's controller.

The main funcƟons of the SDN RM can be described from the network manager's and the experimenter's
point of view. For the network manager, the SDN RM will provide the managing funcƟonaliƟes for the network
resources. It can define the special purpose controller of the testbed, approve or deny the experimenters’ flows-
pace requests, etc.. For those managing funcƟonaliƟes we see that the SDN RM contains an OpenFlow Resource
Manager (OF RM). For the experimenter, the SDN controller offers an interface to define the creaƟon of slices
of OpenFlow resources. An OF resource slice is formed by a flowspace that isolates the experiment traffic and a
controller that manages that traffic. These funcƟons (isolaƟon and management) are performed by the special
purpose controller (e.g. FlowVisor [3]).

Aside from the main funcƟons described above, the SDN RM fits into the the FELIX AAI (AuthenƟcaƟon Au-
thorizaƟon Infrastructure). This infrastructure provides the necessary mechanisms to authenƟcate, authorize
users, as well as provide accountability. In order to offer these funcƟons, FELIX implements a Clearinghouse,
which builds the start of a trust chain. This chain can then be used to verify the idenƟty and privileges of actors.
By using a cerƟficate-based approach, FELIX gathers the flexibility to federate the SDN islands easily. By installing
Clearinghouse cerƟficates actors can be verified against different Clearinghouses. Please see the "FELIX Resource
Orchestrator" chapter for more informaƟon.

The next figure depicts the structure. AddiƟonally to the shown enƟƟes, the experimenter interfaces with
the AAI system. In order to create namespaces for slices and assign users to them (including privileges), the
experimenter can use a client (a GUI or CLI) to make the calls at the AAI system. This client also handles the
interacƟon with the SDN RM.

Thenetworkmanager sets the Special PurposeController of the testbed andother administraƟve/configuraƟon
opƟons. This Special Purpose Controller is connected to the OF devices (e.g. switches) and when a packet arrives
to a switch and there is no entry in the flow table, it is sent to the Special Purpose Controller which, with its slicing
logic, re-sends the packet to the corresponding experiment controller.

DescripƟon of the OF RM (OpenFlow Aggregate Manager)
TheOF RMallows experimenters to allocateOpenFlow resources based on slicing: it is used for administraƟng

OF resources associated to slices. The OF RM is used in order to handle (create, analyze, approve, reject, disable,
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Figure 4.14: SDN Manager Schema

delete, list) OpenFlow switch slivers, i.e. instanƟaƟons of OpenFlow slices.
As an AM, it should be easily extensible: interfaces on the northbound (e.g., administrator) and southbound

(e.g., FlowVisor) interfaces can be added to cover the needs of the testbed administrators (IMs). EssenƟally, the
OFRMprovides support for pluggable administraƟve and configuraƟon interfaces, used tomanage the accounƟng
and resource allocaƟon for experimental slices running on top of physical OpenFlow network substrates. It should
be fairly lightweight and can run on the same system as the slicing mechanism (i.e. FlowVisor) without addiƟonal
hardware requirements. Testbed administrators can also run it on a separate system for isolaƟon purposes, e.g.
so that if they need to reboot the OF RM server, that doesn't affect slicingmechanism. The OF RM should support
some very useful features regarding interfaces with external components such as URL handlers (namespace/call
etc.) and event-handling (slice expiraƟon, event codes, etc.).

As core services, it provides funcƟonaliƟes to setup logging and instanƟate northbound APIs and plug-ins,
credenƟal checking and verificaƟon, southbound API for creaƟng slices, inspecƟng slicing mechanisms, chang-
ing the slice FlowSpace, etc. (essenƟally, the south-bound interface of OF RM, used to communicate with the
slicing mechanism and VirtualizaƟon Tool) and a library for slivers, controllers, FlowSpecs, datapaths and miscel-
laneous objects of the OF RM. It also contains modules for handling FlowSpace allocaƟon, user authorizaƟon, DB
configuraƟon, excepƟon handling, logging, tracing and JSON encoding and validaƟon.

1. Use AM API to inspect aggregate

2. Determine available datapaths and ports (i.e., available OpenFlow resources)

3. Construct OpenFlow resource request

4. Send RSpec request to AM via AM API, requesƟng the creaƟon of a sliver with the required resources

5. Wait for admin approval or rejecƟon of the experimenter’s sliver

6. Start experimenƟng (i.e., uƟlizing the instanƟated sliver)

From the OF RM administrator’s side, the workflow is as follows:
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1. Configure main administraƟve credenƟals (admin password, etc.)

2. Trust a AAI system for user authorizaƟon, configure slice authority credenƟals

3. Setup the OF RM to talk to slicing mechanism

4. Configure local site tags

5. Annotate datapaths with appropriate informaƟon (locaƟon, etc.). OpƟonal

6. Setup administraƟve e-mail noƟficaƟon (e.g., informing about new sliver requests)

7. Set sliver auto-approval policies and configure sliver FlowSpace analysis engine(s)

A full sliver’s life-cycle as derived by the OF RM’s funcƟonality inspecƟon is the following (this mainly applies
to slivers which are not approved automaƟcally, but only aŌer an administrator’s intervenƟon):

1. User: create sliver passing the resource descripƟon

2. OF RM: parse incoming resource descripƟon and return

3. OF RM: send e-mail to admin and user that the resource has been created and its approval is pending

4. Admin: approve-resource, noƟfy the associated parƟes (admin, user)

5. DeleƟon of sliver is carried out by any of these means:

(a) User deletes resource

(b) Admin deletes resource

(c) OF RM: resource expires automaƟcally in case none of the previous steps were taken

Pending, acƟve and even deleted resources can be inspected. Related resource info that can be shown via
the OF RM includes basic resource details, resource descripƟons (i.e RSpecs), FlowSpecs and FlowSpaces.

Resources can be shown (listed), approved, disabled, rejected or deleted via the OF RM.

4.2.1.4 CompuƟng Resource Manager
The funcƟon of the CompuƟng Resource Manager is to provide a method to assign, setup and configure com-
puƟng resources inside a FELIX island. It manages physical compuƟng resources, and also the configuraƟon of
slicing mechanisms (e.g. common hypervisors or other virtualizaƟon stacks) and computer resources as seen in
User Space (OS images, network interface configuraƟon, etc.)

The Figure 4.15 shows C RM operaƟons for three typical scenarios.

• Single hypervisor (leŌ), the C RM instructs the hypervisor to create (or remove, migrate, …) compuƟng
resources (VMs) when needed. Each compuƟng resource belongs to a specific slice.

• HaaS scenario (middle), the FELIX infrastructure provides hardware-as-a-service. The compuƟng resources
managed on HaaS level are not VMs but enƟre IaaS stacks. Contrary to the figure, there may also be
scenarios where the user completely configures VMs from within the experiment, bypassing the C RM.
Similar for OS images which may be user-provided in this case.

• Physical machine (right), an enƟre physical machine is assigned to a slice.
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Figure 4.15: CompuƟng Resource manager operaƟons

In all scenarios, a disk image repository is available, which is used to distribute OS images to compuƟng
resources (e.g., already containing some typical FELIX user tools, slice resource controllers, etc.)

Management of physical compuƟng resources also provides methods for rebooƟng machines, remote con-
trol (of a machine's console), or hard power on/off of a machine experiencing problems, for example using a
networked PDU (power distribuƟon unit). Management is typically only performed during problems, or when a
slice is created, destroyed or modified.

ConfiguraƟon of compuƟng resources
Whereas most of the management matches slice life cycles, the funcƟonality providing configuraƟon and

loading disk images is acƟve anyƟme a slice compuƟng resource is created or modified. MigraƟon of compuƟng
resources to other islands may also require reconfiguraƟon.

ConfiguraƟon includes:

• seƫng of unique informaƟon in the compuƟng resources, such as IDs, SSH keys, IP and MAC addresses

• seƫng up monitoring of compuƟng resources

• configuring of network interfaces of the compuƟng resource, and seƫng the underlying resources (e.g.
hypervisor, HaaS plaƞorm, physical machine…), such that those interfaces are bridged onto the physical
interfaces that are actually connected to SDN zones in the FELIX island

• if necessary, configuring of a slicing mechanism in this bridging, in case mulƟple compuƟng resources or
slices have to share a single physical interface, typically using a (soŌware-based) SDN soluƟon inside the
virtualizaƟon plaƞorm. Once the SDN soluƟon has been properly set up, it becomes an SDN resourcewhich
is managed by the SDN Manager.

ConfiguraƟon may be done by wriƟng to a compuƟng resource's disk images before staring it, or by having
scripts in the compuƟng resource which retrieves configuraƟon data from the C RM. The loading of disk images
itself can be managed by the C RM, or it can be leŌ to the compuƟng resource itself, by providing it with a small
stub OS which retrieves the appropriate disk image from the repository at first boot-up.

4.2.1.5 Monitoring
The purpose of the monitoring framework is to retrieve, aggregate and store the monitoring data of the slices
containing resources from mulƟple testbeds. The type of resources to be monitored are compuƟng resources,
SDN resources and TN connecƟvity between different FELIX islands or faciliƟes.
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We have deeply analysed different kinds of monitoring framework as proposed by other FIRE projects (see
"Related work and testbed analysis" and "Appendix A" for reference). According to Fed4FIRE project, we can
define two different types of monitoring: facility monitoring and infrastructure monitoring.

Facility monitoring includes basic status informaƟon about the facility, such as whether server are up and
network connecƟvity to other testbed (or the Internet) is available. This informaƟon is generally available in
testbed and can be published onto the FELIX GUI (or user portal) for the users and/or testbed managers. Also
included in facility monitoring is status informaƟon about the funcƟonal components of the control andmanage-
ment framework. For FELIX, this means that monitoring of the Resource Orchestrators and Resource managers
(and controllers if not already monitored by general facility monitoring) should be implemented and integrated
into the monitoring framework.

Infrastructure monitoring then concerns the actual resources which are available or provisioned in the FELIX
infrastructure:

• CompuƟng resources: available (virtualizaƟon) servers, memory usage, CPU load, etc.

• SDN resources: available switches, ports, flowspaces (VLAN, MAC addresses ranges, etc.), usage informa-
Ɵon (from device counters)

• Transit network resources: available connecƟvity, endpoints (STPs), bandwidth

The figure below shows the general architecture for the (infrastructure) monitoring framework. The frame-
work consists of monitoring agents (M) and aggregaƟon infrastructure (DB, database).

Figure 4.16: Monitoring architecture

AggregaƟon
The monitoring of resources creates extra state informaƟon inside of the testbeds and FELIX federated in-

frastructure. For some types of resources this monitoring data can match the provisioning informaƟon present
in the Resource Managers. For example, VLAN IDs that are requested through the FELIX architecture (using SFA)
should match uƟlized VLAN IDs as monitored from SDN resources. However, for several reasons there can be a
discrepancy and there is indeed merit in creaƟng addiƟonal state through monitoring. For example, there may
a problem with equipment, configuraƟon or the provisioning mechanism that causes inconsistencies between
provisioned (by the RM) and available resources (as per the monitoring framework).
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Moreover, there is the possibility that CR, SDN and especially TN infrastructure is shared with addiƟonal (fed-
eraƟon) architectures for support of experiment outside of FELIX scope; similarly, some resources may be admin-
istraƟvely reserved by testbed operators. In this case monitoring is required to find out the actual availability of
resources.

Lastly, some monitoring informaƟon depends on the real usage of experiments and users. For example,
for compuƟng resources, the RM will now about provisioned VMs, memory etc., but the actual memory load
will depend on the experiments run by the users (and whether VMs are acƟve for the enƟre duraƟon of the
experiment). For TN resources, connecƟvity is provisioned with a certain bandwidth, but the actual bandwidth
usage will be variable.

As thefigure shows, this addiƟonal state is kept in databases (DB). Tominimize replicaƟonof state, aggregaƟng
informaƟon into addiƟonal higher-level databases should be avoided. However this may be inevitable because:

• aggregaƟng informaƟon reduces load on the monitoring framework

• since physical infrastructure may be shared with other testbed control frameworks (now or in the future),
the FELIX monitoring framework may not have direct access to monitoring agents and have to rely on
forwarded or aggregated monitoring informaƟon (originaƟng from the other control framework)

• aggregaƟng monitoring informaƟon provides a single source for FELIX users to retrieve (current or histor-
ical) resource availability.

Where possible, aggregaƟng databases may act as caches only, meaning they can be reconstructed from the
lowest level databases closest to the Resource Managers and monitoring agents. The Fed4FIRE project currently
proposes OML for the aggregaƟon of monitoring informaƟon.

Monitoring agents
On the figure three types of monitoring agents are shown:

• agents integrated into the Resource Manager of the corresponding resource (ideal case for FELIX frame-
work)

• agents integrated into a controller of the corresponding resource

• agents not coupled to RMor controller, but implemented as a stand-alone services (nevertheless reporƟng
to FELIX databases or RMs).

Themonitoring agentmay need to be integrated into the controller if the resource requires this. For example,
for SDN OpenFlow resources, monitoring informaƟon (e.g. flow counters) are exchange through the OpenFlow
protocol, and anOpenFlow switch connects to only one controller, so it is not possible to bypass the SDNcontroller
and implement the monitoring agent into the RM.

In some cases (e.g. compuƟng/storage infrastructure), testbed operators may use centralized monitoring
appliances (e.g. Zabbix, ZenOSS) that cannot be easily integrated with FELIX components because of technical
issues or because of being shared with other control frameworks.

In the cases the monitoring agent could not be directly integrated with the Resource Manager, aggregaƟon
should allow integraƟng the higher-level databases to be integrated/managed in/by a higher level ResourceMan-
ager or Orchestrator. AlternaƟvely, a monitoring agent may report directly to a corresponding ResourceManager
so that there is no state outside of a RM.

Slice Based FederaƟon integraƟon
The availability of resources according to the monitoring framework will be exposed through the FELIX Man-

agement and OrchestraƟon Architecture. Both higher-level Resource Orchestrators and users (and gui) can use
this funcƟonality to decide on resource allocaƟon. Aside from implementaƟon of this funcƟonality, appropriate
resource specificaƟon languages should be defined for this integraƟon.
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4.2.1.6 User Access/GUI
The FELIX User Interface is in charge of both exposing and allowing access/management to the different testbeds
resources, such as:

• CompuƟng/storage resources: servers, VMs (hard disk, memory), storage units, etc.

• SDN resources: switches, ports, flowspaces (VLAN, MAC ranges…), etc.

• Transit Network resources: connecƟvity, endpoints (STPs), bandwidth, etc.

An UI offers a friendly way to control the lifecycle of an experiment for different type of users, namely ex-
perimenters and administrators. In the experimenters’ side, they are given the necessary permissions to list the
resources, easily select a subset of those in order to allocate or provisioning them, use and finally freeing those.
Addressing the needs for the administrator, it would be possible to perform tasks such as configuring resources
and policies, acƟvaƟng/deacƟvaƟng those, monitoring the resources in order to take further acƟon, approve
resources requests from the experimenters, etc.

As for the different expressions that the UI shall take, this is to be analyzed in order tomake available a subset
of those. Each expression provides different benefits, for example a Graphical UI offered through aweb portal can
offer a higher user experience while the command line tool benefits are the automaƟon, as well as the possibility
of allowing mobile access to extend the project scope.

While the User Interface allows access to resources it also communicates directly with the AuthenƟcaƟon
and AuthorizaƟon Infrastructure (AAI) module in order to control who can access those. That is, the UI is closely
related to the AAI system, which, in a Slice-based architecture stores the following relaƟonships in a registry
(user:permission, permission:resource) and implements the necessary logic in the AAI module to grant or reject
access to a user given its credenƟals and the resources idenƟfiers to be accessed.

Then, the aforemenƟoned AAI module is the ulƟmate responsible of granƟng access to the resources, but
it can be further extended by policies, which are a set of rules defined by the administrators to implement an
upper-level control on the resource usage (e.g. defining a maximum virtual memory value for a VM resource or
a maximum number of flowspaces).

IntegraƟng the UI with a policies tool is advisable, as it also might be desirable to allow access to some AAI
informaƟon through the GUI.

The prototype for the User Interface would be reflected in the deliverable D3.4 ("End User Tools and API").

4.2.2 Slice Resources Controller

The Slice Resource Controller in the context of the FELIX architecture includes all funcƟonality, APIs and applica-
Ɵons that allow the experiment user to control the slice

• from within the experiment (User Space),

• needing support from the FELIX framework, provided by some component(s) in the FELIX Space.

For example, consider an experiment that creates dynamic traffic streams across several SDN islands and
transit domains during the runƟme of the experiment. The experimenter may set up some traffic generators in
User Space, possibly use a custom controller to configure bandwidth paƩerns. However, this is contained within
user space, very specific to the experiment and therefore not within scope of a Slice Controller.

On the other hand, once this bandwidth is generated, the usermaywant to request some dynamic bandwidth
across transit domains, or define some SDN rouƟng scheme. For this, a custom (user-provided) controller can be
used, or a generic FELIX provided controller may suffice, but in both cases these acƟons at some point do require
access to the FELIX infrastructure outside User Space, therefore needing a Slice Controller (or Transit Network
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and SDN controllers respecƟvely) which takes the User Space bandwidth requests and passes them on to the
FELIX Space (e.g. NSI and OpenFlow components).

Put more clearly, there are a number of operaƟons that are considered 'control' of some sort from the user
perspecƟve:

• Management of resources, using the RO and related components in FELIX Space

• Slice control; that is, control of the slice, namely, dynamically adding or removing resources.

• 'other' control, for FELIX use cases this is Network Control (e.g., OpenFlow) and CompuƟng Resource Con-
trol (control of VMs, physical nodes, etc.)

• control implemented through user tools

Out of scope as far as the architectural discussion is concerned, are user tools as well as Network and CR
Control. User tools are implemented by the experimenter; Network and CR Control use exisƟng soluƟons such as
OpenFlow. FELIX Space however does have provisions (were necessary) to configure the slicingmechanisms prop-
erly for these types of control to funcƟon. In view of the use cases, FELIX may create or propose some standard
implementaƟons for these type of control funcƟons for the respecƟve use cases, however these implementaƟon
build onto the FELIX architecture but are not part of it.

The scope of the Slice Resource Controller is the slice control. Control over the slice offers the ability to the
user to use well-defined APIs to add/remove resources (e.g. for virtual machines), request addiƟonal access to
the network (e.g. flowspaces), change connecƟvity or bandwidth reservaƟons (e.g. over the transit network),
etc. It may also be used to reconfigure part of the slice, without a changed in reserved resource: for example, a
tool such as VeRTIGO can provide a means to offer logical topology changes to the user slice; another example
is 'virtually' cuƫng/repairing network connecƟvity to simulate network failure scenarios (such as the disaster
recovery use case).

Types of Slice Controllers
Different funcƟonaliƟes offered by FELIX to the slice are exposed through different types of slice controllers.

• CR controller: for virtualized compuƟng resources, the hypervisor and its API toward the guest kernel (in-
side the slice) provides fairly transparent access to compuƟng resources outside the slice (e.g. disk access,
CPU, physical network ports). The hypervisor (i.e., the controller) will support nested virtualizaƟon for
use case that requires this. For testbeds providing physical compuƟng resources, there may be dedicated
control; for example, the Emulab virtual wall at iMinds provides node control from the tevc (Testbed Event
Client) to control and signal nodes.

• Transit Network controller: allows seƫng up (or tearing down) dynamic bandwidth using the transit net-
work infrastructure outside the slice. This controller may be implemented mostly as funcƟonality offered
by the FELIX control framework. In any case, an important aspect is also the connecƟon and sƟtching of
transit network and SDN zones, testbeds and/or domains (e.g., VLAN translaƟon).

• SDN controller: allows controlling a slice of SDN resources (flowspace), and use SDN techniques to route
and/or switch slice traffic over the physical FELIX infrastructure, over SDN-enabled switches and to/from
transit networks. The SDN controller consists of the controller provided by the experimenter, and the part
of the FELIX SDN Resources Manager which interfaces with the experimenter's controller, i.e., provide a
known protocol such as OpenFlow, and adapt the slice SDN acƟons to the FELIX SDN resources to support
slicing, for example flowspace filtering, translaƟon, logical topology support etc.

Types of control APIs
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Figure 4.17: Slice control and APIs in the FELIX architecture

In most cases, the slice controller will be implemented as two enƟƟes: one inside the User Space, and one
residing enƟrely in the FELIX SPACE, outside of direct control of the user. Between the two enƟƟes, there is a
control API.

As shown on Figure 4.17, the management architecture in FELIX Space is used to provide the slice for the
user experiment. The Slice Resource Controller in run inside User Space, which is supported by the resources of
the slice. API end-points are visible from the slice (and User Space). As there is conceptually overlap between
control and management funcƟon (for example, both control and management can be used to add resources
to the slice), in many case the control funcƟons in FELIX Space will be part of respecƟve Resource Managers or
Orchestrators. In these cases the APIs are aƩached to these RO/RM. In some cases the type of resource control
is may not be a funcƟon of an RO/RM, and a separate controller needs to be provided in FELIX Space. In other
cases sƟll, some legacy control may be involved which falls outside of FELIX Space. Then the API can either talk
directly to components outside FELIX Space, or the communicaƟon can be proxied through an RM or other FELIX
component.

Mapping of Slice Controllers and Resources (Resource Controllers)
Through the use of APIs, slice controllers are mapped to FELIX infrastructure resources and resource con-

trollers. This mapping can be one-to-one, one-to-many and many-to-one on different abstracƟon levels. An
example is shown on Figure 4.18, separaƟng User Space from the rest of FELIX architecture via APIs, for two
slices over two SDN islands connected through a transit domain.

Because of the slicing mechanism, mulƟple slices are supported on top of a single compuƟng resource (VM
server), SDN resource (switch) or NSI resource (links and switches). Therefore at the very least, many slice con-
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Figure 4.18: Examples of mapping between slice controller and resources (resource controllers)

trollers are mapped to the same resource controller in the FELIX control framework; for example, mulƟple VMs
on a single VM server, mulƟple OpenFlow controllers on a single FlowVisor or other OpenFlow slicing device.

From the viewpoint of a single slice, there can be one-to-onemapping, for example, because of slice isolaƟon,
VMs, flowspaces, etc. from other slices are not visible, so a VM's kernel can be fixed to one hypervisor of a single
VM server.

Within a slice, a controller can control mulƟple resources. An experimenter's SDN controller can control
mulƟple switches, possibly even in mulƟple SDN zones or islands. A Transit Network Controller will -in the FELIX
use cases- request connecƟvity in mulƟple NSI domains. Using the CR controller, a VM may be migrated to a
different VM server (different hypervisor), possibly to VM server in a different island.
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5 Conclusions and Summary
The FELIX project creates a FELIX Federated Framework which allows users to request, monitor and manage a
slice in a distributed, heterogeneous, mulƟ-domain environment.

The first step to achieve this aim is define system requirements for such specific environment which allows
to create a virtual infrastructure or a distributed mulƟ-domain slice. Project defined a 5 crucial issues to provide
such distributed slice:

1. AAA -- Applying proper security and control mechanism for users in federated environment;

2. Resource management – CoordinaƟon of various resources provided by mulƟple domain heterogeneous
resource management systems is required;

3. Resource allocaƟon planning – It is important to create a suitable resource allocaƟon plan of both com-
puƟng resources and network resources, which can reflect reservaƟon opƟons for user and resource ad-
ministrator issues, such as cost, energy consumpƟon and load balancing, into consideraƟon;

4. Provisioning – It is important to provide applicaƟons with a virtual flat environment, just like a dedicated
cluster, using dynamic resource informaƟon, such as IP addresses;

5. Monitoring – It is difficult for each user to monitor the usage of distributed and heterogeneous "virtual"
resources managed by mulƟple domains.

The FELIX project has analysed how these issues are resolved in exisƟng project. FELIX has concentrated on
4 European Projects (OFELIA, FIBRE, Fed4FIRE, BonFIRE) and 2 Japanese Projects (GridARS, RISE) focused on the
following architectural components:

• General control frameworks;

• Resource discovery, reservaƟon and provisioning mechanisms;

• Experiment managers;

• IdenƟty management tools;

• User interface tools.

The analyse involves also the evaluaƟon of all those aspects in the context of FELIX project. The general
conclusion was that FELIX project objecƟve is to aim at large scale federaƟons with merging different resources
types at the same Ɵme. In comparison, the analysed infrastructures were limited in range or technology, disre-
garding e.g. long distant network connecƟvity and dynamic provisioning, where FELIX found his place giving an
opportunity to merge and enhance the offered services.

AŌer analyzing exisƟng architectures proposed by the previously menƟoned projects FELIX created its own
architecture, which is the combinaƟon of two spaces (refer to Figure 5.1 and Figure 5.2):

• the FELIX Space (Figure 5.1) – responsible for providing the resources for creaƟng a user slice. It relies on
Resource Orchestrators (ROs), Resource Managers (RMs), and the physical infrastructure (test-bed).

The Resource Orchestrators (ROs) is one of the architectural components that is responsible for the orches-
traƟon of end-to-end, mulƟ-domain service in the FELIX infrastructure. The ResourceManagers (RMs) is the next
architectural components that is responsible for charge of controlling a specific type of resources. The architec-
ture defines several types of RMs: CompuƟng Resource Manager, Transit Network Resource Manager and SDN
ResourceManager. The next architectural component – theMonitoring Framework – is responsible for collecƟng
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Figure 5.1: key concepts of FELIX Space and components

and managing monitoring data from slices and experiments using these slices. In the ideal case, the monitoring
agents and monitoring databases are closely coupled with the RO/RM hierarchy, as shown on the right of the
figure (for island Z). The last architectural component – the Slice Controller funcƟon – is responsible for man-
aging the creaƟon, modificaƟon and deleƟon of slices. It is implemented as a Slice Resource Controller in User
Space, and a set of funcƟons of the RO/RMs. Slice Control is iniƟated from outside FELIX Space, and a set of APIs
is provided to allow this (leŌ part, island A).

• the User Space (Figure 5.2) – consists of any tools and applicaƟons which allow to control a slice or execute
parƟcular operaƟon on slice by user.

Figure 5.2: key concepts of User Space and components
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User Space is supported by the set of virtual resources of the corresponding slice. From the perspecƟve
of user Space, the slice consists of a number of IT, transit and SDN resources. These are controlled using Slice
Resource Controllers that communicate with FELIX Space through the control APIs described above. The archi-
tecture of control inside User Space depends on the specific use case. Slice Resource Control may be spread out
over mulƟple components, and similar types of resources may be controlled frommore than one controller (e.g.
one SDN resource controller per island, as is the case for slice 1 in the figure).

The FELIX architecture proposed in this document is generic, in the sense it leŌ more specific decisions to be
taken during an implementaƟon process. It defines however the main components, its responsibility and depen-
dency, which enables readers to understand the concept of how FELIX will operate. It is crucial to understand
that the proposed soluƟon is scalable, and this can be understand in two contexts. It is scalable, in the sense
that a built infrastructure can be easily extended with new sites, by simply deploying new ROs and RMs under
exisƟng hierarchy. It is also scalable in the sense that the management layer and its RMs are not limited to han-
dle only specific types of technologies or protocols. Despite FELIX proposed three main RM type (CR, TN, and
SDN), nothing prevents developers to add new funcƟonal block to that, while the interacƟons and dependencies
is already there. In this way FELIX concept can be extended to cover new emerging and future trends in IT, like
e.g. Network FuncƟon VirtualizaƟon [7].

The architecture puts an emphasis on dynamic provisioning and automated components collaboraƟons,
which enforces RMs to be autonomic in decision making process, yet enabled for communicaƟon and opera-
Ɵon in wider, more complex environment. The aspect of federaƟon is extremely important for FELIX, as it will
integrate FI experimental faciliƟes on different conƟnents and provide soluƟons to real exisƟng problems, as de-
fined in Use Cases of D2.1 deliverable [20]. Therefore the automaƟon, independence, and security of all FELIX
enƟƟes are treated with care and considered in details. The adopƟon of FELIX architecture at the top of exisƟng
FI experimental facility should not be considered as rebuilding the whole exisƟng management layer, but instead
as an adding new funcƟonality to enhance offered services, and to expand its range and features.

The proposed FELIX architecture is an input for further implementaƟon efforts, which will prototype and val-
idate specific implementaƟon of the FELIX framework. As menƟoned before, the FELIX architecture definiƟon
is generic, thus the result of the project will be just one way of realising it in pracƟce. It is envisaged that FELIX
project will use NSI CS standard for performing TNRM funcƟonality and SFA for CRmanagement, which are imple-
mentaƟon decisions. This document and its statements are the final conclusion of the design and architecture
definiƟon efforts of FELIX, however the document and its content may be updated as new ideas or issues will
arise during implementaƟon phase of the project.
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Appendix A
In this appendix, we discuss further details for each testbed outlined in the previous chapter: "Related Work and
Testbed Analysis". In parƟcular, we give a brief overview of each testbed and provide addiƟonal implementaƟon
details previously omiƩed for brevity. These details focus on the infrastructure and plaƞorm developed in the
course of each project, and are described below:

OFELIA
OFELIA (OpenFlow in Europe -- Linking Infrastructure and ApplicaƟons) is a pan-european testbed, consisƟng of
the following faciliƟes:

• Berlin, Germany (TUB) – parƟal replacement of exisƟng campus network with OF-switches

• Ghent, Belgium (iMinds) – central hub, large-scale emulaƟon

• Zurich, Switzerland (ETH) – L2 (NEC) switches mesh, connecƟon to OneLab and GENI

• Barcelona, Spain (i2CAT) – L2 (NEC) switches and opƟcal equipment (ROADM ring)

• Bristol, UK (UNIVBRIS) – naƟonal hub for UK opƟcal community; opƟcal (ADVA, Calient), L2 (NEC, Extreme)
switches, FPGA testbed

• Catania, Italy (CNIT) – based on NetFPGA and OpenSwitch technologies, with focus on ICN (InfomaƟon
Centric Networking)

• Rome, Italy (CNIT) – based on NetFPGA and OpenSwitch technologies, with focus on ICN -- under deploy-
ment

• Trento, Italy (CREATE-NET) – a city-wide distributed island based on L2 (NEC) switches and NetFPGA; opt-in
users via heterogeneous access technologies

• Pisa, Italy (CNIT, 2 locaƟons) -- based on NetFPGA and OpenSwitch technologies, with focus on Cloud Data
Center management -- under deployment

• Uberlândia, Brazil (UFU) -- under deployment

Based onOpenFlow 1.0, OFELIA offers a private test environment for the development and tesƟng of newnet-
work applicaƟons using novel topologies. It integrates OpenFlow-enabled hardware devices of various vendors
(e.g. NEC, ADVA) and sets of virtual machines for traffic generaƟon.

OFELIA’s faciliƟes are interconnected to a single network distributed across Europe. The connecƟvity between
the islands is based on Gbit/s Ethernet tunnels.

OFELIA Control Framework

The OFELIA Control Framework (OCF) is a set of soŌware tools for testbed management. It controls the experi-
mentaƟon life cycle; including reservaƟon, instanƟaƟon, removal, configuraƟon and monitoring.

The control framework hides the complexiƟes involved in single and federated island setups, yet sƟll pro-
viding enough informaƟon so that experimenters can program their environment using heterogeneous, scalable
resources. It enables allocaƟng resources and running experiments in the enƟre OFELIA facility.

OCF features the full soŌware stack: front-end, clearinghouse and resource managers (AMs). It also provides
support for management of OpenFlow, Virtual Machine (currently Xen-based) and Emulab resources.
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The testbed control framework front-end is a tool called Expedient. The island managers will use it to con-
figure and assign resources to projects as well as manage user data and credenƟals; while the experimenters will
use it to configure, start and stop their experimental slices as well as updaƟng their own user, project and slice
data.

Expedient communicates with every Aggregate Manager in order to perform the resource provisioning. OCF
provides a base class for the AMs: AMsoil, a pluggable system that determines a structure and provides the
necessary modules for handling incoming communicaƟon and easing the resource management.

The core idea behind OFELIA Control framework (OCF) architecture is to provide a federated experimental
facility capable of provisioning isolated virtual experimental infrastructure onOFELIA campus islands. OCF is char-
acterised by its modularity ands abstracted implementaƟon. These features enable an incremental development
whilst retaining consistency.

It fulfils important funcƟonal goals, such as:

• Maintaing autonomy of islands

• Unique experiments idenƟfied by independent, isolated slices

• Individual island policy management

• Opt-in resources for experiments

• FederaƟon between other projects (e.g. Import & export resources from other faciliƟes)

• InstanƟaƟon of a generalized virtual topology completely decoupled from the physical islands, based on
switches, links and virtual machines

OFELIA Architecture

Figure A.1: Individual Island Architecture
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Any individual island within the OFELIA facility will use the same control and management architecture to
provide experimental services. The experimental, control andmanagement architecture of a single OFELIA island
can be divided three layers. The three layers (starƟng from the top) are:

• Experiment Control andManagement layer (ECML): the uppermost layer beneath the user interface. The
component at this layer is the clearing house (slicemanager and repository), whichwill contain informaƟon
about projects, slices, and user informaƟon (repository/database)

• Slice Control and Management layer (SCML): contains the various aggregate managers which aggregates
different resources to give a unified view to the upper layer. The components residing at this layer will
enforce policies on the components in the lower layer. In this layer, aggregate managers can be separate
enƟƟes or can be an aggregate of aggregate managers forming a hierarchy of aggregate managers

• Resource Management layer: manages the resources in the OFELIA facility. IrrespecƟve of the virtualiza-
Ɵon techniques used for different resources, the objecƟve of RML is to provide an experiment with the
illusion that it is running on its own dedicated infrastructure. Two resource managers are idenƟfied:

– the RM for OpenFlow-enabled equipment (using FlowVisor)

– the RM for virtual machines (using XenServer hypervisor technology)

Components across these layers (e.g. hierarchy of aggregate managers) may differ based on the individual
offering to the OFELIA facility.

FederaƟon Mechanism

OFELIA control framework was based on SFA, a federaƟon framework which defines a set of rules by which two
or more experimental enƟƟes can be federated. The OFELIA facility exists as a federaƟon of heterogeneous
experimental faciliƟes with a homogeneous control framework. This is called intra-federaƟon.

Intra-federaƟon
It follows the same architecture as the single island architecture, and is visualized in Figure A.2. The common
problems in an intra-federaƟon experiment are related to idenƟty, authority management and also the con-
trol procedures which are inherently handled by the OFELIA control framework. All the available resources are
accessible through the control framework. The UI is an enƟty which talks to the clearinghouses. The clearing-
house/Slice manager is responsible for communicaƟng with all the aggregate managers through its southbound
interface to collect all informaƟon regarding the available resources and present it to the UI layer.

Inter-federaƟon
It is defined as the federaƟon of heterogeneous experimental faciliƟes with heterogeneous control frameworks.

In order to support federaƟon with other testbeds OFELIA idenƟfies following requirements that the control
framework should fulfil:

• Unified profile for cerƟficate authority management

• Control frameworks that support common interfaces or adapters

• Common data access interfaces

When saƟsfying inter-federaƟon in OFELIA control framework, the resources will be made available to a dif-
ferent control framework through its associaƟonwith the aggregated aggregatemanagers. Aggregate AMs collect
all informaƟon from the lower level AMs to present the available resources to the other federaƟon. Interior and
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Figure A.2: Architecture for intra-federaƟon

exterior gateway managers perform the funcƟon of imporƟng and exporƟng resources from other testbeds as
described in the following figure:

In order to support federaƟon with other testbeds OFELIA control framework architecture supports a plug-
gable environment to add new interfaces. The plugin system has SFA plug-in support to interface with exisƟng
SFA based testbeds. It is also modular enough to create new plug-ins as needed.

FIBRE
All the informaƟon in this secƟon is taken from [2], [12] and [13], to which refer for further details.

The FIBRE (Future Internet testbeds and experimentaƟon between BRazil and Europe) project aims to de-
sign, implement and validate a shared Future Internet research facility, supporƟng the joint experimentaƟon of
European and Brazilian researchers. This overall main goal can be broken down into the following objecƟves:

• Build a shared-scale experimental facility.

• Federate the Brazilian and European faciliƟes.

• Showcase the potenƟal of the infrastructure.

• Enhance the collaboraƟon and exchange of knowledge between European and Brazilian researchers in the
field of Future Internet.

The FIBRE testbed is a federaƟon of several data-centers distributed across Europe and Brazil managed by
different kind of control and monitoring framework (OFELIA, OMF and ProtoGENI). This federaƟon joins three
testbeds:
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Figure A.3: Architecture for inter-federaƟon

• Ofelia testbed, based on OpenFlow technology.

• NITOS testbed, wireless nodes based on commercial Wifi cards and Linux open source drivers.

• FIBRE-BR testbed, including nine Brazilian partners interconnected using private L2 channels.

The Figure A.4 shows the overall scenario of FIBRE testbed.

FIBRE Architecture

The FIBRE architecture (or FederaƟon Environment) is the result of an analysis and internal project decisions
related to federaƟon issues on the number of authoriƟes, the naming, the user portals and the federaƟon of the
control plane.

AuthoriƟes. FIBRE testbed is designed to have two top-domain authoriƟes, the first under the responsibility
of Brazil and the laƩer under Europe responsibility. These two authoriƟes will be inter-connected in order to
achieve a federaƟon implying that a SFA Register has to be deployed in each side and each authority has to sign
the cerƟficate issued by the other authority.

The Figure A.5 shows the peering of EU-BR authoriƟes for FIBRE federaƟon.
User Portal. FIBRE testbed is designed to have at least one portal per top-authority. The chosen soŌware

component is MySlice tool.
The Figure A.6 shows the integraƟon of MySlice component into FIBRE architecture.
FederaƟon Control Plane. The MySlice portal will interact with NITOS (based on OMF) and OFELIA CMFs

through its SFA-GW (SFA gateway) component, which includes the responsibility of the slice management. The
SFA-GW directly interacts with OFELIA Aggregate Managers which already support the GENI version 3 APIs. On
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Figure A.4: FIBRE testbed

Figure A.5: FIBRE top-authoriƟes

the other hands, the SFA-GW will need an SFA Wrapper (or SFA Driver) to communicate to OMF which sƟll does
not support SFA APIs in the version 5.4. It is important to note that OMF 6.0 will naƟvely support SFA through
the omf_sfa component.

The Figure A.7 shows the interacƟon of MySlice portal with the CMFs.
SynchronizaƟon of LDAP and SFA Registry. The synchronizaƟon between LDAP and SFA Registry is a cru-

cial point for FIBRE testbed allowing the reuse of the LDAP user management, already deployed in OFELIA and
Brazilian testbed.

FIBRE Use-Cases

The FIBRE project has idenƟfied three scenarios to evaluate the deployed local and federated faciliƟes.
Seamless mobility for educaƟonal laptops.
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Figure A.6: Fibre federaƟon portal

Figure A.7: FIBRE federaƟon control plane

The goal of this use-case is to analyze and uƟlize the capabiliƟes ofwireless networks to augment the seamless
handoffs experience on networks formed bymobile users, i.e. people using smart phones, tablets, netbooks, and
notebooks. This tech-pilot aims to join the common OpenFlow enabler and WiFi access point providing spaƟal
coverage for experimental wireless communicaƟon, laptops and/or programmable handheld devices with WiFi
and Bluetooth (BT) interfaces, plus instrumentaƟon for traffic generaƟon and analysis and mobility emulaƟon.

High definiƟon content delivery across different sites.
The idea behind this use-case is that an OpenFlow based applicaƟon (i.e. a NOX applicaƟon) can be interfaced

to one or more Content Delivery Servers (CDSs) that form a Content Delivery Network (CDN). This applicaƟon
could monitor the CDS performance by retrieving the related status, load and failures. When certain thresholds
are exceeded (e.g. the load on CDS or its energy consumpƟon), NOX applicaƟon can re-route one or more clients
to another CDS located in another site. The re-rouƟng can be performed and facilitated by NOX applicaƟonwhich
can easily change the flow tables of the OF switches under its control.

Bandwidth on demand through OpenFlow GMPLS in the FIBRE facility.
This use-case aims to analyze the flexibility of the OpenFlow protocol and NOX control plaƞorm in a close

collaboraƟon with a GMPLS PCE (Path Compute Element) module to implement an open and generalized Band-

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 76



General Architecture and FuncƟonal Blocks

width on Demand (BoD) service on virtualized networks. The Figure A.8 shows the overall architecture with the
design modules and their interfaces:

Figure A.8: Fibre UseCase 3 overall architecture

Several building blocks are deployed to fulfil the requirements:

• Flowvisor, used to virtualize the physical network topology.

• Ofelia Control Framework, used to manage each island's resources (Openflow switches and Virtual ma-
chines).

• NOX controller, used to retrieve the network informaƟon and to create/destroy the flow-entries into the
OpenFlow enabled switches.

• Flow-Aware PCE, used to calculate a path between source and desƟnaƟon end-points.

• OSCARS, used to perform the BoD requests and to share topology details between different islands.

The Figure A.9 depicts the physical interconnecƟon between a Brazilian partner (CpQD) and an European
partner (i2CAT) through a VPN Layer 2 circuit.

Fed4FIRE
In order to achieve the desired architecture for resource discovery, requirement, reservaƟon and provisioning,
the following components must be deployed within a federaƟon facility:
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Figure A.9: Fibre UseCase 3 Physical InterconnecƟon between Brazil ans Europe

• Portal: A central starƟng place for (new) experimenters. Totally new experimenters can register on the por-
tal. The portal will also provide a view on the available resources in the federaƟon, supporƟng resource
discovery, requirements definiƟon, reservaƟon and provision operaƟons. Note that, besides, other ex-
perimenter standalone tools can provide the same funcƟonality but novel experimenters will be able to
access through a single site.

• IdenƟty provider: Experimenters idenƟfy themselves at the portal as federaƟon experimenters are regis-
tered at this idenƟty provider. As can be seen in the figure, testbeds can also deploy their own idenƟty
provider (testbed A). However, if testbeds do not want to go through the burden of seƫng up their own
idenƟty provider, they have to outsource this funcƟonality to the idenƟty provider of the FederaƟon Fa-
cilitator.

• A testbed directory: A directory readable by humans and by computers that has an overview of all testbeds
in the federaƟon. In its computer readable form, the testbed directory ismerely a lisƟng of the IP addresses
corresponding with the different testbedmanagement soŌware deployments that expose the common in-
terface for discovery, reservaƟon and provisioning. In its human readable form, this directory is a webpage
that displays some introductory informaƟon about each testbed belonging to the federaƟon.

• A tool directory: It gives an overview of available tools for the experimenter. This will again be a web-
page were more informaƟon regarding FIRE tools is gathered. This can cover both tools that are officially
endorsed by some of the testbeds, and other tools that are brought to light by experimenters or the tool
developers. Users will gain access to the human readable testbed directory through the portal.

• CerƟficate directory: In our distributed architecture, the targeted chain of trust implies that testbeds
should import the root cerƟficates of the different idenƟty providers present in the federaƟon into their
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own access control components. This way the testbeds can verify that an incoming user is indeed affili-
ated with a federaƟon member. These root cerƟficates could just be manually exchanged between the
different testbed operators. However, it is more convenient to provide a trusted locaƟon that makes all
the federaƟon root cerƟficates available in a single download. This is the goal of the cerƟficate directory.

• Future reservaƟon broker: A tool to facilitate future reservaƟons of resources, this broker can help to find
and subsequently reserve the right Ɵme slots and resources over mulƟple testbeds. A single query to this
broker will provide the informaƟon for all testbeds.

A Fed4FIRE testbed has the following aƩributes:

• A testbed may be or may not be an idenƟty provider.

• For authenƟcaƟon/authorizaƟon between users and testbeds, a trust model is used. IdenƟty providers
trust each other and specific experimenter properƟes are included in the experimenter’s cerƟficate, which
is signed by the idenƟty provider. Testbeds can therefore do rule-based authorizaƟon. This means that
incoming users cannot only be disƟnguished based on the affiliaƟon, but also on the experimenter’s profile.
For instance, because of this approach, a testbed is able to define and enforce the policy that experimenters
coming in from the federaƟon should at least have reached the Ph.D. student level. This means that on this
parƟcular testbed, master students will not be granted access, even if they are affiliated with a member
of the federaƟon.

• A testbed can query/trust the central cerƟficate directory to seewhich root cerƟficates it should trust. This
is more convenient than manually retrieving all cerƟficates from the different idenƟty providers within the
federaƟon.

The exisƟng component(s) responsible for discovery, reservaƟon and provisioning should expose this func-
Ɵonality through a common interface. SFA is considered to be a suitable choice for such a common interface.
However, when adopƟng SFA for the envisaged heterogeneous federaƟon, three important addiƟons are needed:

• The GENI RSpecs are not Ɵghtly specified, which means that the same type of resources (e.g. virtual ma-
chines) are defined inmulƟple ways. It is the goal to further explore the use of ontology based descripƟons
for these RSpecs in the context of the Fed4FIRE project. This should make it easier for experimenters, ex-
perimenter tool and broker developers to use these resources.

• Policy based authenƟcaƟon is considered to be very important. CredenƟals, cerƟficates and policy engines
should be extended as such.

• There is no concept of future reservaƟon in the AM API at this moment. This extension will be studied
further.

Monitoring and Measurement

The following types of monitoring and measurement are idenƟfied in Figure A.10:

• Facilitymonitoring: This providesmonitoring informaƟonused in the first level support to see if the testbed
faciliƟes are sƟll up and running. The most straight forward way for this, is that there is a common dis-
tributed tool which monitors each facility (Zabbix, Nagios or similar tools). Another possibility is to expose
the informaƟon already registered by currently deployed monitoring tools. In both cases, the interface on
top of this facility monitoring should be the same. It needs further specificaƟons.
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• Infrastructure monitoring: This provides monitoring informaƟon about the infrastructure resources that
is useful for experimenters. For instance, providing measurement data about resources such as switch
traffic, wireless spectrum or physical host performance if the experimenter uses virtual machines. This
should be provided by the testbed provider (an experimenter has for instance no access to the physical
host if he uses virtual machines), and as such, a common interface is needed but is not exisƟng today .

• Experiment measuring: Measurements which are done by a framework that the experimenter uses and
which can be deployed by the experimenter itself on his testbed resources in his experiment. As illustrated
in Error: Reference source not found for instance, one can see two experiment measuring frameworks
each with its own interfaces (and thus experimenter tools). Of course, a testbed provider can ease this by
providing e.g. OS images with certain frameworks pre-installed.

Figure A.10: Monitoring and measurement architecture

Experiment control

For experiment control, the testbeds or central locaƟons should not run specific components, as the experimenter
can fully roll this out on his own. So from an architectural point of view, no specific components need to be
introduced to support experiment control. However the testbed providers could ease this by puƫng certain
frameworks pre-installed in certain available disk images. Ideally, these frameworks are based on a standard
resource control protocol, since thiswill permit to control resources providedby federated faciliƟes using different
management soŌware in a uniformway. An example of such a protocol is the federated resource control protocol
(FRCP) .
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BonFIRE
All the informaƟon in this secƟon is taken from [1], [18] and [19], to which refer for further details.

The BonFIRE (Building service testbeds for Future Internet Research and ExperimentaƟon) project goal is to
provide a state-of-the-art mulƟ-site cloud facility for applicaƟons, services and systems research in the Internet
of Services (IoS) community. This facility can give researchers access to large-scale virtualized compute, storage
and networking resources with the necessary control and monitoring services for detailed experimentaƟon of
their systems and applicaƟons.

BonFIRE comprises 7 geographically distributed testbeds across Europe, which offer heterogeneous cloud
resources, including compute, storage and networking. The Figure A.11 shows further details about resources
offering on the different testbeds.

Figure A.11: Geographically distributed testbeds

Resource control.
BonFIRE offers the complete control of compute, storage and networking resources. It supports dynamically

creaƟng, updaƟng, reading and deleƟng resources throughout the lifeƟme of an experiment. Compute resources
can be automaƟcally configured with applicaƟon-specific contextualizaƟon informaƟon.

The BonFIRE framework can offer “on-request” compute resources, allowing experimenters to reserve large
quanƟƟes of physical hardware (162 nodes/1800 cores available) and giving experimenters flexibility to perform
large-scale experimentaƟon.

Managed experiment environment.
BonFIRE gives the fully control of the running experiments. An experiment can define the enƟre infrastruc-

ture across all testbeds in a single file descriptor and can perform further complex acƟons on the newly created
infrastructure. E.g.:

• Saving compute disk images with owner soŌware stack or storage resources.

• Sharing saved compute and storage resources.

• Sharing access to experiments with colleagues.

• RepeaƟng experiments and share experiment descripƟons for others to set up.
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• Aggregated monitoring metrics at both resource level (e.g., CPU usage, packet delay, etc.) and applicaƟon
level.

• Aggregated monitoring metrics at infrastructure level at selected testbeds.

Ease of use.
BonFIRE gives a deep control of resources to configure, execute and manage the experiment trying to make

this acƟons as easy as possible. It offers several tools to interact with BonFIRE API, e.g.:

• BonFIRE Portal GUI, where it is possible to create an experiment in a step-by-step manner

• CLI (command line tool), such as Resƞully

• A script file descriptor (JSON or OVF based format), which can be automaƟcally executed by Resƞully

• Raw HTTP commands via cURL

What can be tested and how.
BonFIRE supports experiments exploring the interacƟons between novel service and network infrastructures.

Three iniƟal scenarios have been defined to highlight the general classes of experiment that can be supported by
the facility. These scenarios include:

• Extended cloud scenario: a federated facility with heterogeneous virtualized resources and best-effort In-
ternet interconnecƟvity.

• Cloud with emulated network implicaƟons: experimental network emulaƟon plaƞorm under full control
of the experimenter

• Extended cloud with complex physical network implicaƟons: experimental cloud system federated with
GÉANT BoD and FEDERICA (collaboraƟon with NOVI)

BonFIRE site facility ConnecƟng NREN
EPCC JANET
HLRS DFN
HPLabs JANET
IBBT BelNET
INRIA RENATER
PSNC PIONIER

Table A.1: BonFIRE sites and correlated testbeds

BonFIRE Architecture

The BonFIRE architecture is composed by several layers (Portal, Experiment Management, Resource Manage-
ment, Enactor and Testbed site layer) and a set of cross-cuƫng capabiliƟes for monitoring and idenƟty manage-
ment. Each layer exposes funcƟonaliƟes via a set of well-defined APIs.

The Figure A.12 shows a high-level overview of the BonFIRE architecture.

• The Portal. The Portal offers the experimenters a graphical user interface showing the running experi-
ments, the available resources at each testbed site, the monitoring informaƟon, etc…

• The Experiment Manager. The Experiment Manager provides an interface to schedule, plan and orches-
trate the execuƟon of an experiment as described by a file descriptor (with all resources for an iniƟal
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Figure A.12: BonFIRE Architecture

deployment).

• The Resource Manager. The Resource Manager provides an interface to create, manage and terminate
compute, storage and network resources, which may physically reside at any testbed in the BonFIRE sys-
tem.

• The Enactor. The Enactor allows the decoupling of the specific implementaƟons of the testbed API from
the BonFIRE Resource Manager providing a well-defined and “standardized” interface (like a driver or a
general plugin).

• The Testbed Sites. The BonFIRE cloud testbed sites use a common OCCI interface to expose resources
(compute, storage and network) to the Enactor. Compute resources refers to virtual machines created for
experiment, network resources connect these VMs and storage resources are disk-blocks aƩached to VMs.

Cloud-to-Network Interface

BonFIRE provides the experimenters with the possibility to request QoS-enabled network connecƟvity services
with a guaranteed bandwidth to interconnect BonFIRE sites (Bandwidth on Demand services). Instead of relying
on the best-effort Internet connecƟvity, the cloud resources located in different BonFIRE sites can be intercon-
nected through a dedicated network service with the bandwidth requested by the experimenter in terms of
minimum bandwidth reserved andmaximum bandwidth guarantee.

The inter-site BoD services are provided by a third-party network provider connecƟng the BonFIRE sites. In
parƟcular, BonFIRE adopts the GÉANT Bandwidth-on-Demand system (AutoBAHN), which is a mature soluƟon in
terms of specificaƟons, implementaƟon and deployment in a mulƟ-domain environment.

The Figure A.13 depicts two of BonFIRE sites (EPCC and PSNC) connected to the European GÉANT network.
In order to integrate the AutoBAHN services, BonFIRE architecture was enhanced with a new module (Auto-

BAHN Adaptor) and a new resource type (Site-Link). The AutoBAHN Adaptor's main funcƟonality is to translate
BonFIRE OCCI to BoD service requests, basically SOAP requests towards the AutoBAHN User Access Point (UAP)
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Figure A.13: BonFIRE Cloud-to-Network interface

interface. The Site-Link resource is a new type of OCCI resource (like storage or network resource), which can
be manipulated following the common CRUD mechanisms adopted in BonFIRE to create, remove and query re-
sources via OCCI interfaces. The site-link resource is described by several network parameters, i.e. endpoints
(each BonFIRE site connected to GÉANT), vlan idenƟfier, bandwidth constraint, etc..

The Figure A.14 shows the enhancement to BonFIRE architecture with AutoBAHN services.

Figure A.14: Enhancement to BonFIRE architecture with Cloud-to-Net extensions
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GridARS
The GridARS (Grid Advanced Resource Management System) framework is a reference implementaƟon of the
Open Grid Forum (OGF) Network Services Interfaces (NSI), ConnecƟon Service (CS) protocol standard, developed
by AIST. The CS protocol version 2 is a Web services-based interface to reserve, provision, release and terminate
a service, such as a end-to-end connecƟon, via a two-phase commit protocol. GridARS can coordinate mulƟple
resources (services), such as a network connecƟon, virtual machines and storage spaces, via the CS protocol.

Figure A.15: GridARS resource management configuraƟon.

Figure A.15 shows a resource management configuraƟon assumed by GridARS. In Figure A.15, Domain A
and B denote network domains managed by different administraƟve organizaƟons. This resource management
configuraƟon consists of a Global Resource Coordinator (GRC), which coordinates heterogeneous resources, and
Resource Managers (RMs), which manage each local resource directly. GRCs and RMs can work together to
provide users a virtual infrastructure overmulƟple domain physical resources. NRM, CRMand SRM in Figure A.15
denote RMs for networks, computers and storage, respecƟvely. More than one GRC is allowed in a single system.
GRCs could be configured in a coordinated hierarchical manner, or in parallel, where several GRCs compete for
resources with each other on behalf of their requesters, such as users and applicaƟons.

GridARS Architecture

Figure A.16 illustrates GridARS architecture. In order to provide requesters with a virtual infrastructure, which
spans several cloud resources, provided bymulƟplemanagement domains including commercial sectors, GridARS
provides three service components:

• Resource Management Service (RMS)

• Distributed Monitoring Service (DMS)

• Resource Discovery Service (RDS)
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Figure A.16: GridARS service components.

ResourceManagement Service (RMS) is based onNSI CS and consists of GRCs and RMs. Co-workingwith GRCs
and RMs, RMS enables to coordinate heterogeneous virtual resources on mulƟple cloud environment. Here, a
virtual resource means a part of physical resources, sliced and isolated by other users or applicaƟons. For exam-
ple, a network resource is an end-to-end bandwidth guaranteed connecƟon and its detailed physical topology
does not need to be disclosed. GRC has a co-allocaƟon planning capability, called Planner. Planner determines
a suitable resource allocaƟon plan. Based on the allocaƟon plans, GRC can perform resource reservaƟon on
subordinate GRCs or RMs.

Distributed Monitoring Service (DMS) allows to the requesters to monitor the virtual environment, allocated
to them. DMS does not have a central database, such as MonALISA and PerfSONAR, and each virtual resource
usage is monitored, managed and filtered by each cloud administrator. DMS gathers such distributed monitoring
informaƟon, tracking the hierarchical RMS reservaƟon tree using the reservaƟon ID, automaƟcally. DMS consists
of Aggregators (DMS/A) and Collectors (DMS/C). DMS/A gathers monitoring informaƟon from related DMS/As or
DMS/Cs distributed over mulƟple domains, and provides the informaƟon to the requester. Each DMS/Cmonitors
the reserved resources periodically, filters the monitoring informaƟon by the domain policy, and provides the
requester with the authorized informaƟon. Based on the monitoring informaƟon, the requesters can recompose
the virtual infrastructure for their applicaƟons.

Resource Discovery Service (RDS) collects staƟc resource informaƟon items from each resource domain, and
provides the aggregated informaƟon. The RDS implementaƟon is based on Catalog Service Web (CSW), defined
by Open GeospaƟal ConsorƟum (OGC), which is an online XML-based database. Each resource domain can POST
an XML document, which describes its staƟc resource informaƟon, such as network topology, number of VMs,
and storage spaces.
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RISE
Since 2009, JGN-X have been working on developing a naƟon-wide OpenFlow testbed "RISE(Research Infrastruc-
ture for large-Scale network Experiments)". RISE project is successfully running an OpenFlow testbed over JGN-X,
with fully uƟlizing its wide-area coverage from US West coast to Southeast Asia. RISE provides the wide-area OF
network composed by the hardware OpenFlow switches, also provides the RISE OF Controller based on Trema
which developed by NEC. Also researchers and developers can try their ownOF controller on the RISE network for
their experiment. And some SDN or Cloud developers can try their own soŌware examinaƟon with the dynamic
network provisioned by the RISE controller. Currently, RISE has 11 sites in Japan, and three sites in overseas. For
each site, RISE has a few OpenFlow switches and two VM servers (Japan domesƟc only). Currently, there is no
any control framework and portal. It means FELIX control framework will be great contribuƟon to them.

Figure A.17: Global RISE testbed infrastructure

Previous RISE Architecture

RISE is constructed over the JGN-X network, thus links between OpenFlow switches are implemented by tradi-
Ɵonal VLAN technology. In order to create the network slices, RISE divided one physical OpenFlow switch into 16
VSIs (Virtual Switch Instance). This virtualizaƟon mechanism is not provided by OpenFlow standard, but Open-
Flow switch specific funcƟon. Therefore, 16 users can share single physical OpenFlow switch at maximum. In
addiƟon, VM servers are installed on each site and VMs are aƩached to the experimental user’s slices.

For the link between OpenFlow switches, it's implemented by tradiƟonal VLAN technology. Therefore, it was
difficult to isolate "RISE user slice" and another user's slice created by only VLAN. So they decided to use Pseudo
Wire technology for data-plane between OF switches in each site. However, they had the issue on the topology.
They have ten sites in Japan and three sites in overseas (Los Angeles, Bangkok, Singapore) but its topology is not
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Figure A.18: RISE Architecture

full mesh. As the result, users concentrate sites which can create the loop topology, then fully-uƟlized the testbed
environment. In order to resolve this issue, they develop the new architecture called RISE3.0.

Current RISE Architecture

In this RISE 3.0 design, RISE team employs logical path system because it is easy to implement. This method
replaces ethernet switch which locates between user OpenFlow switch and JGN- X switch, with OpenFlow switch.
It called this OpenFlow switch "RISE OFS" (Figure A.19: RISE Logical path). In RISE 3.0, they provide logical
neighbor link for user OpenFlow switches combining physical neighbour links. In Figure A.19, user OpenFlow
switches Ua, Ub, Uc connect RISE OFSes Ra , Rb , Rc respecƟvely. We assign ports to logical paths for each users.
Ra , Rb , Rc connect JGN-X switches Ja , Jb , Jc respecƟvely, and JGN-X switches forward packet whose VLAN is
already configured, with Pseudo Wire . In this example, VLAN ID "L" is assigned to link between Ja and Jb, "M" is
assigned to link between Jb and Jc. And logical path "R" is configured between Ua and Uc. Path "R" consists of
mulƟple physical links "L" and "M". Logical path is defined by user idenƟfier and edge ports of RISE OFS.

ImplementaƟon of Logical Path

For implementaƟon of RISE logical path, there are following two methods.

• 1) VLAN stacking

This method uses VLAN ID as logical path idenƟfier. For each logical path, it assigns VLAN ID (hereaŌer, logical
path ID), then RISE OFS fowards packets with the logical path ID. HereaŌer, we express Pac as logical path ID. The
packet from Ua to path "R" is added logical path idenƟfier "R" at Ra. Then, to forward neighbour JGN-X ethernet
switch Jb, Ra adds VLAN ID "L" according to physical link Lab which consists of logical path "R". In other words,
controller adds flow entry to add VLAN IDs "R", "L" in order, and to forward to Ja from OpenFlow switch Ua port
for path "R". In Rb, it trims top VLAN ID "L", then it observes "R". Rb recognizes that it is on the way of "R", thus
adds new neighbor link ID "M" to foward next JGN-X ethernet switch Jc. Finally, Jc receives the packet, sends to
Rc, Rc removes VLAN ID "M", "R", and forwards Uc. As explains above, we can implement logical path stacking
VLAN IDs which specify logical path and neighbour link. RISE OFS is able to decide the desƟnaƟon of receiving
packet according to VLAN IDs.

• 2) Address rewriƟng
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Figure A.19: RISE Logical path

Figure A.20: ImplementaƟon by VLAN stack

This method rewrites MAC address of packet to foward along the logical path. In this method, RISE OFS idenƟfies
logical path with MAC address instead of VLAN ID. As same as Figure A.19, user OpenFlow switches (except for
Ub), RISE OFS, JGN-X ethernet switches are connected. Let logical path be defined by port a0 of Ra and port c1
of Rc. In Figure A.21, Ra and Rc are edge OFSes, Rb is core OFS. When Ra receives packet from Ua to path, it
recognizes that the packet belongs to logical path "R" from user idenƟfier U and input port a0. Then, Ra rewrites
VLAN ID to "L" to forward the packet to Jb. Finally, it rewrites source and desƟnaƟon MAC addresses to sʹ,dʹ
respecƟvely, and sends to Ja. This methods differs from 1) that it does not stack VLAN ID, but rewrites MAC
addresses to gurantee uniquness of packet on the logical path. For example, if Ra receives packet whose source
and desƟnaƟon addresses are s,d fromUa, it send RISE 3.0 controller Packet-In message. The controller idenƟfies
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user idenƟfier U and input port a0 from the Packet-In message. The controller can calculate edge OFS Rc and port
c1 of the path according to U and a0. Then, it sends flow entries to Ra , Rb , Rc along the path. On Ra, Rc (edge
OFS) rewrite VLAN ID and MAC addresses, and on Rb just rewrites VLAN ID ("L"→ "M").

Figure A.21: ImplementaƟon by rewriƟng MAC addresses

RISE 3.0 controller will employ address rewriƟng method which described in 2). Because of implementaƟon
limita- Ɵon of RISE OFS. Because there is a limitaƟon of RISE OFS product specificaƟon. In fact, when push two
VLAN-IDs to OFS simultaneously, the performance degrades. And also, VLAN stacking is not allowed on JGN-X
switches, because of operaƟon policy.

RISE Use-Cases

Dynamic path provisioning over inter-domain SDN testbed. This use case is aiming to interconnect SDN testbeds in
3 conƟnents and provision the layer2 path dynamically. IDCPwas used for the interconnecƟon between domains.
To make a provision the path in RISE, we embedded RISE OF controller into OESS, developed by GlobalNOC and
deployed in Internet2. We performed dynamic path provisioning demo between RISE SDN testbed in Japan and
US Internet2 AL2S in 2013.
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Figure A.22: SDN connecƟon demo
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