FEDERATED TEST-BEDS FOR LARGE-SCALE INFRASTRUCTURE EXPERIMENTS

FELIX EU-JP

Collaborative joint research project co-funded by the European Commission (EU)and National Institute of

Grant agreement no:

Project acronym:
Project full title:
Project start date:
Project duration:

Information and Communications Technology (NICT) (Japan)

608638

FELIX

"Federated Test-beds for Large-scale Infrastructure eXperiments"
01/04/13

36 months

Deliverable D2.2
General Architecture and Functional Blocks

Version 1.0

Due date:

Submission date:

Deliverable leader:

Author list:

31/12/2013
11/02/2014
PSNC

Radek Krzywania (PSNC), Wojbor Bogacki (PSNC), Bartosz Belter (PSNC), Kostas
Pentikousis (EICT), Tom Rothe (EICT), Matthew Broadbent (EICT), Gino Carrozzo
(NXW), Nicola Ciulli (NXW), Roberto Monno (NXW), Carlos Bermudo (i2CAT),
Albert Vico (i2CAT), Carolina Fernandez (i2CAT), Tomohiro Kudoh (AIST), Atsuko
Takefusa (AIST), Jin Tanaka (KDDI), Bart Puype (iMinds)

Dissemination level

oood

PU: Public

PP: Restricted to other programme participants (including the Commission Services)

RE: Restricted to a group specified by the consortium (including the Commission Services)
CO: Confidential, only for members of the consortium (including the Commission Services)

General Architecture and Functional Blocks .

<THIS PAGE IS INTENTIONALLY LEFT BLANK>

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

Table of Contents

Abstract

Executive Summary

1 Introduction

2 System Requirements

3 Related Work and Testbed Analysis

3.1 Survey of

European and Japanese testbed architectures L.

3.1.1 OFELIA o o e e e
3.1.2 FIBRE . . . o e
3.1.3 Fedd4FIRE e e e
3.1.4 BonFIRE o e e
3.1.5 GridARS e e
3.1.6 RISE . o o o e e e

4 System Architecture

4.1 Concepts
411 FE

and Definitions L e e e
LIX physical network infrastructure concepts,

4.1.2 Slice-based Federation (SF) concepts

413 FE

LIX architecture definitions e

4.2 Architectural Building Blocks e e
4.2.1 Management and Orchestration Architecture
4.2.2 Slice Resources Controller e e

5 Conclusions and Summary

References

Appendix A

List of Figures

Figure 1.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 4.1

Figure 4.2
Figure 4.3
Figure 4.4

FELIX and User Spaces Architectural Concept
OFELIA High Level System Architecture
FIBRE Architecture e e
Proposed architecture for discovery, requirements, reservation and provisioning
BonFIRE Architecture with Cloud-to-Net extensions
GridARS resource management configuration.
Global RISE testbed infrastructure
Implementation by rewriting MACaddresses
FELIX overall architecture -- ROs use RM to manage physiacal resources of different types

(e.g. Transit Network, SDN, Computing Resources).
FELIX physical network infrastructureconcepts
FELIX infrastructure key concepts e
NSI Framework e e e e e

12

23
23
23
24
25
27
28
29
31
37

65

69

70

29

Figure 4.5 FELIX Resource Orchestrator positioning in the FELIX architecture. 47
Figure 4.6 Hierarchical Resource Orchestratorin FELIX 49
Figure 4.7 multiple RMs insingledomain e 50
Figure 4.8 inter-domain communication requirement L oL 51
Figure 4.9 General example of topology abstraction 52
Figure 4.10 Network reservation through non-FELIXdomain. 52
Figure 4.11 TN RMreservation state machine ... 53
Figure 4.12 TN RM provision state machine 54
Figure 4.13 TN RM lifecycle state machine 54
Figure 4.14 SDN ManagerSchema e e 56
Figure 4.15 Computing Resource manager operations 58
Figure 4.16 Monitoring architecture e e 59
Figure 4.17 Slice control and APIs in the FELIX architecture 63
Figure 4.18 Examples of mapping between slice controller and resources (resource controllers) . . . 64
Figure 5.1 key concepts of FELIX Space and components 66
Figure 5.2 key concepts of User Space and components, 66
Figure A.1 Individual Island Architecture 71
Figure A.2 Architecture for intra-federation L 73
Figure A.3 Architecture for inter-federation L o 74
Figure A.4 FIBREtestbed e 75
Figure A.5 FIBRE top-authorities e e 75
Figure A.6 Fibre federation portal e 76
Figure A.7 FIBRE federation control plane e 76
Figure A.8 Fibre UseCase 3 overall architecture 77
Figure A.9 Fibre UseCase 3 Physical Interconnection between Brazil ans Europe 78
Figure A.10 Monitoring and measurement architecture 80
Figure A.11 Geographically distributed testbeds 81
Figure A.12 BonFIRE Architecture e e e 83
Figure A.13 BonFIRE Cloud-to-Network interface 84
Figure A.14 Enhancement to BonFIRE architecture with Cloud-to-Net extensions 84
Figure A.15 GridARS resource management configuration. 85
Figure A.16 GridARS service components. v v i i e e e e e e e 86
Figure A.17 Global RISE testbed infrastructure, 87
Figure A.18 RISE Architecture e e e 88
Figure A.19 RISE Logicalpath e e 89
Figure A.20 Implementationby VLANstacko 89
Figure A.21 Implementation by rewriting MACaddresses 90
Figure A.22 SDNconnectiondemo i i i i e e e e e e 91
List of Tables
Table 2.1 MUST System Requirements e e e e 18
Table 2.2 SHOULD System Requirements o i i i it it et e e e e e 21
Table 2.3 MAY System Requirements e e e e e e 22
Table 3.1 Architectural Elements of Existing Testbeds 37
Table 3.2 Overview of advantages and disadvantages of alternative approaches 38
Table 4.1 SFAmainconcepts e e e e e 43
Table 4.2 FELIX architectural components e 45

General Architecture and Functional Blocks .fell)(

Table A.1

BonFIRE sites and correlated testbeds

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No. 608638)
D2.2
31/12/2013

82

General Architecture and Functional Blocks .

Abstract

The deliverable defines general architecture and functional blocks which provides a FELIX Federated Framework
for integration of different network resources distributed in a multi-domain heterogeneous environment. The
document focuses on all components and their functionalities, including aspects of resources management, con-
figuration, monitoring and user access. The document also specifies mechanisms that are used to provide feder-
ated services. This deliverable is the basis for the work related to the implementation of the FELIX Inter-Islands
Connectivity Framework.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

General Architecture and Functional Blocks

Executive Summary

Deliverable D2.2 defines the control and management architecture for federated Future Internet testbeds. Al-
though architectural choices concern mainly a federation of European and Japanese testbeds, and specifically
OFELIA and RISE, the project ambitions go far beyond, trying to propose a federation framework to be well
adopted by other platforms, not only located in Europe or Japan.

The deliverable challenges a number of questions, which build together a set of components used to construct
the FELIX architecture:

e What are the system requirements for a federation platform? This deliverable reports on further analysis
of the User Requirements previously identified and described in D2.1 [20], which have been translated into
System Requirements — consolidated and prioritized FELIX framework requirements, which must be taken
into account while the defining the FELIX architecture.

e What are the existing federation frameworks and control/management tools to be adopted in FELIX? This
deliverable provides an analysis of existing solutions, already deployed in Future Internet testbeds in Eu-
rope and Japan. It provides a survey of European and Japanese testbed architectures, with particular focus
on federation mechanisms to be re-used in FELIX.

e What are the key system components of the desired federation platform? The deliverable introduces func-
tional decomposition of the FELIX architecture. All components of the architecture and their expected
behaviour are described in detail, highlighting the functionality of interfaces between external entities
and the system itself.

e How to integrate different resource types for creating a slice out of federated resources? The deliverable
indicates several resource types which are crucial for creation of inter-domain multi-technology slices built
out of federated resources. It also explains how to manage those resources and unite them into single slice
entity.

The deliverable presents all components, interface and protocols at a high level of abstraction. It states a
general view on architecture, building blocks, resource types and collaboration of all system entities for slice
delivery, however it does not define the explicit way of software development. This concept is introduced inten-
tionally, giving a level of freedom to software developers implementing the FELIX architecture suited to a specific
testing environment. The document is intended as a set of architectural guidelines for developers, rather than
the detailed software design of the FELIX platform. In order to make the architecture applicable not only to FE-
LIX project, the document focuses on requirements, rather than on explicit protocols or interfaces to be used.
Despite the face that it contains some suggestions (e.g. usage of NSI CS standard or OpenFlow protocol for SDN
control), the readers of the document may use any other technologies, as long as they are in alignhment with the
architecture requirements defined. The FELIX project team will make the final selection of protocols and software
tools during the implementation phase, and will deploy the service prototype according to the specific needs and
environment, i.e. taking into account the Fl experimental infrastructures which are part of the consortium.

This document defines the System Requirements, which are functional and non-functional requirements
identified by FELIX partners, needed to implement the framework and run the Use Cases defined in D2.1 deliv-
erable [20]. These requirements are used to define the three levels of FELIX framework management structure:
Resource Orchestrators (RO), Resource Managers (RM) and resources themselves. The ROs form a hierarchical
tree structure which allows information to propagate in an organized manner and locate resources in multiple
federated testbeds. The ROs at the very bottom of the tree control RMs, which are responsible for the configu-
ration of resources in a single domain. Each RM is responsible for a different type of resource. The types are not
limited to, but include the following types defined within this document: Transit Network, SDN, and Computing
Resources. This organized tree structure is called a FELIX Space and is dedicated to managing the infrastructure

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 7

General Architecture and Functional Blocks

and configuring the user slices within it. When a slice is created, a user can control and access it via the User
Space, which consist of various tools provided either by a user or the FELIX project itself (e.g. a SDN Controller).
Through the analysis of existing solutions, the use and selection of existing out-of-the-box tools and concepts
is proposed. This minimizes the implementation work, and facilitates the re-use of already available products
and/or standards, while the emphasis in implementation effort will be placed on integration of federated re-
sources.

This document is addressed to network specialists, network architects and decision makers involved in the
construction of SDN testbeds in different phases (from architectural design, through implementation to opera-
tion), as well as those software developers implementing specific features of control/management frameworks
for SDN testbeds.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 8

General Architecture and Functional Blocks

1 Introduction

The FELIX project aims at creating a common framework in which users can request, monitor and manage a
slice provisioned over distributed and distant Future Internet experimental facilities. This document specifies
the FELIX architecture, main functional blocks of the architecture, as well as providing a common background of
terminology to be used in all documents produced in the project.

In FELIX project deliverable D2.1 [20], six use cases have been identified, detailed and further grouped into
two major groups: Data Domain use cases and Infrastructure Domain use cases. These use cases have been iden-
tified with the primary objective of motivating concepts and innovations expected through FELIX and to identify
and address existing issues and barriers when federating distributed, geographically distant testbed facilities.

The FELIX Data Domain use cases mostly target the area of SDN and dynamic interconnections via NSI. Data
caching, fast delivery, streaming and the related workflow management are key in this group of use-cases:

¢ Data on Demand — delivery of distributed data by setting data flows over the network

e Pre-processing and delivery of nearly real-time [satellite] data to geographically distant locations (from EU
to JP and vice versa)

¢ High quality media transmission over long-distance networks

The FELIX Infrastructure Domain use cases focus more on the efficient use of federated and dispersed Fl
resources (on different continents), to migrate entire workloads (VMs and data) or virtual infrastructures in a
more efficient way (e.g. with energy saving targets) and enhanced features (e.g. data/service survivability in case
of disasters):

¢ Data mobility service by SDN technologies
¢ Follow-the-sun / follow-the-moon principles
¢ Disaster recovery by migrating laaS to a remote data center

The six FELIX use cases have been further translated into a set of user requirements (UR) that describes the
expectations from the FELIX system in terms of objectives, use-case environment, constraints and measures of
effectiveness and suitability. This deliverable reports on further analysis of the previously identified user require-
ments and presents the refined list of system requirements (SR), consolidated and prioritized FELIX framework
requirements, which must be taken into account while defining the FELIX architecture. System requirements,
which are identified and presented in details in this deliverable, build a foundation for the technical analysis of
the system/platform to be designed and implemented in a distributed testbed environment spanning among
Europe and Japan.

This deliverable attempts to define a preliminary high-level FELIX architecture. The architectural work on
specific FELIX components have been preceded with a deep analysis of current architectures and existing testbed
management/control frameworks running in Europe and Japan to re-use as much as possible and avoid re-
inventing already established and well working mechanisms and algorithms. Project partners agreed to restrict
the analysis to the OFELIA, FIBRE, Fed4FIRE and BonFIRE projects on the European side and the GridARS and
RISE projects on the Japanese side. The state of the art analysis focused, among the others, on the following
architectural components:

* General control frameworks
¢ Resource discovery, reservation and provisioning mechanisms
e Experiment managers

¢ |dentity management tools

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 9

General Architecture and Functional Blocks .

e User interface tools

It should be noted that all the aforementioned projects run their own complete stack to manage resources
in either distributed or centralized testbed environments. Each system component of the existing frameworks
has been analysed, highlighting its usefulness for FELIX. The resulting FELIX architecture clearly marks the ex-
pected progress beyond state of the art, while a decision on which component from the existing frameworks will
be re-used during the implementation phase will depend on the final software design, which will happen after
completion of this architectural framework.

FELIX aims to provide a framework for integration of different network resources residing in a multi-domain
heterogeneous environment. The resulting architecture should be flexible and scalable to assure a sufficient
level of interaction between various system components. In the FELIX project it is agreed to use a hierarchical
model for inter-domain dependency management, with orchestrator entities responsible for synchronization of
resources available in particular administrative domains.

The architecture can be seen as a combination of two spaces (see Figure 1.1):

¢ FELIX Space consists of management and control tools to coordinate processes of creation of a virtual
environment in a heterogeneous, multi-domain and geographically distant testbed. The components of
the FELIX space will operate in hierarchical model, to enable efficient information management and sharing
across multi-domain environment.

e User Space consists of any tool or application a user wants to deploy to control his virtual network envi-
ronment or to execute a particular operation within it. The selection of tools is completely dependent on
specific user requirements and is out of scope of the FELIX framework.

FELIX SPACE

Configure
Slice

Cie NI SO YO %

=

sland A sland B sland C

Control
Slice

USER SPACE

Figure 1.1: FELIX and User Spaces Architectural Concept

Both spaces play distinct roles in creation and operation of each virtual network environment, which is created
by the FELIX Space upon a request from a user, and then managed by user tools in the USER Space.

In this architectural document, all components, interfaces and protocols are described at a high level of ab-
straction. Consequently, the document provides a set of architectural guidelines for software developers, while
eventual decisions on implementation choices (e.g. specific technologies) to be used will be made while the
detailed software architecture is being realized. The document is structured as follows:

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 10

General Architecture and Functional Blocks

e System Requirements chapter contains an explanation of functional and non-functional requirements that
must be fulfilled by the FELIX framework, in order to operate and allow to implement the Use Cases, as
defined in [20].

¢ Related Work and Testbed Analysis chapter contains a brief overview of Fl architectures that we selected as
related to the FELIX work. The chapter also list tools and technologies which FELIX may potentially utilise
and also explain the advantage of new framework over the existing ones. The more detailed Fl testbed
descriptions can be found in Appendix A.

e System Architecture chapter provides an overview of FELIX architecture details and components. This
chapter is divided into the following sub-chapters:

— Concept and Definitions -- explains terminology and concepts used in this document, and consoli-
dates the preliminary terminology defined in [20].
— Architecture of the Components -- explains the FELIX and User Space components and their depen-

dencies, interactions, interfaces and responsibilities.

e Conclusions and Summary chapter contains a summary of the FELIX architecture, conclusions and concepts
for further development.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 11

General Architecture and Functional Blocks

2 System Requirements

A virtual infrastructure or a slice, distributed over multiple regions and domains, enables large-scale data inten-
sive scientific computing, such as high energy physics, bioscience and geoscience, and highly available and per-
formance assured commercial services. Data intensive scientific applications need to manage Peta-to-Exascale
data, produced by geographically distributed high performance experimental instruments and sensors, provided
by several organizations, and process them effectively. In addition, commercial service applications require stable
distributed computing infrastructure because they have to provide national and worldwide users with a quality-
assured service, and prepare for recovery and continuation of the services after a natural or human-induced
disaster.
Crucial issues to provide a slice in a federated testbed environment are as follows:

¢ Resource Orchestration -- Orchestration of various virtualised resources, not only computers, but also net-
work and storage, provided from multiple domains, is required.

¢ [sland Resource Management -- Coordination of various resources provided by heterogeneous resource
management systems within an Island is required.

e Resource Allocation Planning -- It is important to create a suitable resource allocation plan for both comput-
ing resources and network resources. This should take into consideration user and resource administrator
issues, such as cost, energy consumption and load balancing.

e Provisioning -- It is important to provide applications with a virtual flat environment, just like a dedicated
cluster, using dynamic resource information, such as IP addresses.

e AAA (authentication, authorization and accounting) -- It is vital, that all actions are proven to be performed
by authorized actors -- and only by those authorized. This includes making sure the persons are who they
claim to be, ensuring people may perform the actions they are trying to and to record those actions.

¢ Monitoring -- It is difficult for each user to monitor the usage of distributed and heterogeneous "virtual" re-
sources managed by multiple domains. Each domain has to provide monitoring information for resources
(which are virtual rather than physical) which are parts of a slice belonging to the user. Such monitoring
information from multiple domains has to be coordinated and provided to the user.

Recently, cloud computing or laaS (infrastructure as a service), in which a “slice” is constructed dynamically
according to a request, is coming into widespread use.

Aslice is an infrastructure constructed on top of physical resources (such as computer and storage hardware)
using virtualisation technologies. A user to whom a slice is provisioned can use it as if it was his own physical in-
frastructure. Using such dynamic slice, from the view point of a user, a required infrastructure (such as computers
and storages) is provisioned dynamically when it is needed. Users do not have to own their own resources, and
should pay the cost only when they use the resources. From the view point of resource providers, utilization of
the resources can be maximized, and the operating cost can be minimized by having a large number of uniform
resources at one place. In addition, the energy consumption of a slice can be reduced by optimizing resource
usage. In existing Cloud Management Systems (e.g. OpenStack, CloudStack), all the physical resources, which
are composed in one slice, belong to a single data center. Therefore, optimization (in terms of both performance
and energy cost) of resource utilization among multiple data centers is not possible.

Different services such as computing and storage may be supplied by different providers. In such a case,
network bandwidth between data centers of the providers is important to achieve high performance and stable
service. By providing a wideband stable network between data centers, an inter-domain slice can be provisioned,
therefore being composed of resources delivered by multiple data centers.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 12

General Architecture and Functional Blocks

In an inter-domain slice, an inter-cloud network provided dynamically is connected to an intra-data center
network. Since there will be multiple tenants of cloud services in a data center, multiple virtual networks will be
formed inside of an intra-data center network. It is important that these virtual networks are properly connected
to inter-data center networks; consequently, inter-data center resource management becomes important, in-
deed a number of research results have been reported on this issue. A Discovery Service, which collects static
resource information, a Resource Management Service, which schedules and co-allocates appropriate resources,
a Provisioning Service, which constructs a virtual infrastructure for the resources at a reserved time and a Mon-
itoring Service, which collects resource usage information of each user’s slice and provides it to the user are
required.

For all actions, the FELIX architecture and implementation must make sure that all actions are performed by
authorized actors only. All entities with their respective interfaces need to adopt a authentication and autho-
rization scheme. This scheme needs to ensure that the facility's entities, including their interconnections, are
protected from malicious attackers. Especially, the management interfaces need to be safeguarded with authen-
tication and authorization measures. Also, accounting is a vital part of security, because the logging of actions
can later not only be used to charge the perpetrator, but also to learn and guard for the future.

This chapter will present the FELIX framework system requirements (SR), which contributes to the proposed
architecture approach and fulfills the User Requirements defined in D2.1 Experiment Use Cases and Requirements
deliverable [20]. The Software Requirements (SRs), in comparison to Use Cases and URs (User Requirements),
identify particular features of the architecture and software modules, creating a list of requirements facilitating
the validation of the final FELIX product. SRs are more detailed, often splitting single URs into several functional
requirements, realized by one or more dependent software modules. The requirements presented in this section
are grouped in three sets, depending on the assessment made by the FELIX partners on the importance of the
particular requirement for the implementation of a use case. This importance ranking is expressed according to
[14] with the following keywords:

e MUST — for requirements which are mandatory for design and implementation of the FELIX framework
and its components,

e SHOULD —for requirements which are recommended due to increased efficiency, optimization or any other
positive effect to the end users

e MAY — for requirements which are optional and do not influence overall FELIX functionality in significant
manner.

SRs usually directly reference one or more URs, explicitly linking the Use Cases with specific FELIX functionality.

ID Requirement Description UR Ref.
SR.1.1 User request acceptance | The FELIX framework MUST accept user requests
for a slice, which includes a minimal set of details
required to create a multi-technology
multi-domain slice. The "minimal set of details"
is technology dependent and is not in scope of
this document. The approval of a single request
may be the subject of additional considerations
according to set policy or system constraints.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

13

General Architecture and Functional Blocks

SR.1.2

Implement a slice

The FELIX framework MUST implement a user
slice, according to resources availability and
various constraints, respecting slice
requirements provided by a user. The slice may
be multi-technology and multi-domain. FELIX
MUST be able to orchestrate the resources
allocation process and reply user with success or
failure notification of slice creation

SR.1.3

Request API

The FELIX framework MUST provide a user AP,
which allows to perform the minimal set of
operations: (i) request a slice; (ii) check slice
status; (iii) request a slice termination

SR.1.4

Distributed environment
support

The FELIX framework by default is a multi-domain
environment and therefore its components
MUST be designed and implemented in a way
allowing the distribution of the components and
independent system deployments in particular
domains. All framework entities MUST be able to
be instantiated as standalone components, and
MUST NOT depend on each other. The only
allowed dependency is a network
communication between entities, however
entities should handle communication failures
and continue operation without critical errors.

SR.1.5

User slice control

A user MUST have immediate access to a created
FELIX slice, so that he/she can reach and
manipulate any resource, that was expressed as
a slice requirement. FELIX may hide some slice
infrastructure components, which are vital for
slice delivery but was not explicitly mentioned by
a user, e.g. network hardware for inter-domain
connectivity, hardware virtualization platform,
etc

SR.1.6

User web portal

The FELIX framework MUST provide end users
with a graphical user interface, e.g. a web portal,
as an interaction mechanism. A user must be
able to manage his slices and reservations
through the GUI and receive notification from
the system.

SR.1.7

Command line access

The FELIX framework MUST provide users with
command line style interface, in order to request
and manage slices. It is advised to reuse existing
CLI tools, like OMNI or SFI, with proper
adaptation to FELIX architecture.

Project:

Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No. 608638)

D2.2
31/12/2013

14

General Architecture and Functional Blocks

SR.1.8

Complex slice
infrastructure creation

The FELIX framework MUST be able to build on
demand a complex slices, using infrastructures
and resources of different domains at the same
time. Users should not be restricted by the
architecture in the amount of resources allowed
to build a slice, except for authorization, policy
and infrastructure constraints. Slices may consist
of any amount of SDN, transport network and/or
IT resources, providing users with wide range of
services and giving the control over the
resources directly to a particular user. The
exemplary usage of FELIX framework is described
in [20] deliverable in Use Case section.

SR.1.9

Messaging consistency
and integrity

The message exchange between the FELIX
framework entities MUST be assured to be
secure and consistent, in the sense that message
delivery must be controlled and monitored. The
entities must be assured that the message is
delivered or a failure has occurred. The integrity
of the message must be protected, in order to
prevent modification of the message content by
unauthorized external entities

SR.1.10

The FELIX framework
must control resources
of different types

In order to deliver to a user a multi-technological
slice, including resources of different types, the
FELIX framework MUST be able to manage
different kind of technologies, including SDN,
transport networks, and IT resources. FELIX
MUST provide mechanisms to request
configuration and synchronize technological
parts of slice.

UR.1, UR.2

SR.1.11

Scalable technology
modules deployment

The technology management modules (Resource
Managers -- RM) in single domain MUST be able
to be deployed in scalable and efficient way. The
particular technological sub-domains managers
should be able to be deployed independently
and should not relay on each other during
operation, unless a synchronization effort is
needed. Therefore an administrator should have
an option to deploy only some of the available
RMs, and not all of them, if they are not required.

SR.1.12

Support for SDN
resources

The FELIX framework MUST be able to configure
SDN resource types within a particular domain,
in order to create and configure a user slice, and
deliver this slice under user control

UR.3

SR.1.13

Support for Transport
Network resources

The FELIX framework MUST be able to configure
a transport network resource types within a
particular domain, in order to create and
configure a user slice, and deliver this slice under
user control.

UR.3

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No. 608638)

D2.2
31/12/2013

15

General Architecture and Functional Blocks

SR.1.14 Support for IT resources

The FELIX framework MUST be able to configure
an IT (e.g. servers, data storage, etc.) resource
types within a particular domain, in order to
create and configure a user slice, and deliver this
slice under user control

UR.3

Orchestration and
synchronization of
resources configuration

SR.1.15

The FELIX framework MUST orchestrate and
synchronize configuration of particular
sub-domain configurations (SDN, transport
networks, IT, etc.), providing unified slice
resources able to collaborate in a transparent
way (not disturbing end user actions).
Particularly, the integration of SDN and Transport
Network resources is critical for achieving the
FELIX project objectives.

UR.3, UR.10

SR.1.16 Organized orchestration
layer of FELIX

framework

The orchestration layer of FELIX MUST be
hierarchical, organized, and scalable in the
context of deployment and management. This
will require coexistence of multiple orchestration
entities, able to collaborate in organized manner
for:

¢ delegating (also splitting) requests to
appropriate orchestrators or RMs

¢ forwarding messages in hierarchical model

¢ synchronize state for consistent global
view of slices and resources

UR.11

Resources allocation
mechanism in
distributed environment

SR.1.17

The FELIX framework MUST have a resources
allocation mechanism, which will be able upon a
use request to:

¢ identify required resources

¢ |ocate the resources in domains (relaying
on available information)

e construct initial draft of slice description,
including information on domains and
their resources required to build a user
slice

® accept constrained queries providing slice
descriptions excluding particular resources
in a domain (e.g. when a reservation fail
due to particular domain, a new resources
search should not try to use the
""refused"" resources)

UR.4

Project:
Deliverable Number:
Date of Issue:

D2.2
31/12/2013

FELIX (Grant Agr. No. 608638)

16

General Architecture and Functional Blocks

SR.1.18

Support for

inter-domain transit
network configuration

Transit Network resources MUST be able to be
configured involving multiple domains, so that a
created connection can link and/or pass multiple
administratively independent domains, managed
by different ROs and RMs. The inter-domain
configuration must be under control of proper
ROs and RMs, which should be aware of such
action and required interaction.

UR.6, UR.12

SR.1.19

Authentication of users

The FELIX framework MUST be able to
authenticate end users in advance, before
providing them access to any FELIX controlled
resources and slices

UR.5

SR.1.20

Authentication of FELIX

entities

All FELIX entities MUST be able to authenticate
each other (e.g. with X.509 certificates), in order
to prevent unauthorized resource manipulation.

UR.5

SR.1.21

Authorization of users

The FELIX framework MUST be able to authorize
end users on particular resources usage in order
to prevent abuse of resource usage. Users should
have access only to the resources assigned to
them by FELIX framework. Authorization data
will also prevent users from invoking
unauthorized actions and define users roles (e.g.
administrator, experimenter, etc.)

UR.5

SR.1.22

Authorization of FELIX

entities

All FELIX entities MUST be able to authorize each
other, in order to prevent unauthorized resource
manipulation.

UR.5

SR.1.23

Users notifications

Users MUST be notified about significant events
happening in the FELIX framework environment.
Such events include:

¢ acceptance of a single slice request
¢ confirmation of resource booking

¢ notification on slice set up

¢ notification on recognized failures
¢ confirmation of slice tear down

¢ notification of administrative messages
(e.g. planned maintenance)

The notification may be delivered at least as:

¢ email sent to a user, if a user explicitly
express such interest while request
submission and provide system with a
valid email address

* anotice in GUI related to a user, a slice or
a particular reservation.

UR.8

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No. 608638)

D2.2
31/12/2013

17

General Architecture and Functional Blocks

SR.1.24

Resources awareness

The FELIX framework MUST be aware of all
resources available for configuration in the whole
controlled environment. This information is vital
for proper operation, resource management and
configuration. This information must be
organized and structured allowing browsing
resources types, domains in charge of them, and
relation between domains (e.g. network
connectivity).

UR.7

SR.1.25

Resource information
propagation

The global resource information MUST be
dynamically distributed to all FELIX entities,
which consider this information as critical to
operate (mostly ROs and resources allocation
entities). The framework MUST deliver an
automated mechanism (e.g. a lookup service)
where resource information can be stored and
distributed in consistent state

UR.7

SR.1.26

Resources usage

The FELIX framework MUST keep track of
resources usage, assignment, and availability in
order to search and allocate only free resources
to new slices. FELIX MUST guarantee that the
same resource is not shared between more than
one user at the same time, providing exclusive
resources access and isolation of slices

UR.7

SR.1.27

End users VPN service

The FELIX framework MUST provide a VPN
service with configurable resource access,
limited to slice scope. This will be one of the
mechanisms providing isolation of user slice and
default way for users to access their slice
resources. The configuration of VPN service per
user must include setting up authentication and
authorization details, restricting access to
allowed resources only, setting up access
policies, and possibly firewall restrictions. The
user must be authenticated and authorized to
the VPN service in order to prevent resources
abuse or unauthorized access. The VPN service is
configured on per slice and per user basis, and
the configuration process is allowed to be
manual

UR.9

Table 2.1: MUST System Requirements

Requirement

Description

UR Ref.

SR.2.1

Accounting information

The FELIX framework SHOULD be able to collect
accounting information in order to track user
activity and resources utilization. This will allow
create resources usage reports and account
users for their resources utilization. Accounting
information may also be used to restrict users
e.g. with resources quotas, etc.

UR.20

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No.
D2.2
31/12/2013

608638)

18

General Architecture and Functional Blocks

SR.2.2

Monitoring up-to date
resources status

The resources information and/or FELIX system
entities SHOULD be able to be updated
frequently or on-event by monitoring system, in
case of resource status change, i.e. in
unexpected failure conditions. This will
potentially allow to make FELIX framework more
robust and react on critical situations

UR.13

SR.2.3

Notify users on
unexpected failures

The FELIX framework SHOULD be able to notify
users about critical situation encountered during
slice operation, i.e. unexpected resources
failure. The system may or may not undertake a
repair action, however user SHOULD be notified
that the slice is not fully operated or unavailable
at all. The notification SHOULD include the
amount of information will not discover FELIX
critical information, yet it will be meaningful for
the end users, allowing to understand the cause
and location of the problem.

UR.8, UR.13

SR.2.4

Resilient service
configuration

While searching, allocating and configuring
FELIX resources for slice purposes, FELIX
framework SHOULD be able to implement
resiliency features, which will protect all or
critical resources in case of failure. Resiliency
SHOULD be optional for end users and must be
explicitly expressed by an end user at slice
request time.

UR.17

SR.2.5

Critical failure
restoration

In case of a critical failure regarding usage of
slice resources, the FELIX framework SHOULD
take a repair action. If a user expressed
resiliency expectation, the protected/backup
resources can be used. If a user did not express
resiliency as a requirement, or failure applied to
non protected resources, a repair action MAY
involve reconfiguration of existing slice
pre-empted by now resources search with
additional constraints

UR.17

SR.2.6

Optimization and
automation of
resources allocation

The resources information and/or FELIX system
entities SHOULD be able to be updated
frequently or on-event by monitoring system, in
case of resource status change, i.e. in
unexpected failure conditions. This will
potentially allow to make FELIX framework more
robust and resilient, and as a consequence
provide better, more reliable services to the end
users. The information on current and planned
resources status can be potentially also used for
resource scheduling and planning, in order to
make the assignment more stable and failure
proof.

UR.15

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No. 608638)

D2.2
31/12/2013

19

General Architecture and Functional Blocks

SR.2.7

Dynamic resources
configuration

The FELIX framework resources allocation
mechanism SHOULD be automated, so that the
incoming request are served immediately
without delays of human intervention.
Framework should have autonomy to decide
which resources and in which domain should be
delegated in order to build a user slice. The
process should include optimization
mechanisms and respect user constraints and
SLA

UR.15

SR.2.8

Automated
configuration of VPN
service

The FELIX framework VPN service SHOULD be
configured automatically by FELIX framework on
per slice per user basis, regarding a user slice
request and assigned resources. The framework
should have all credentials to provide
authentication and authorization configurations,
set up firewall policies, user policies, access
privileges, and whatever other actions, required
to allow particular user to access his assigned
resources/slice. At the same time the
configuration must assure slice and users
isolation in the FELIX environment, preventing
resources abuse and over-utilization

SR.2.9

RMs may be able to
interact directly in
inter-domain
environment

For optimization and efficiency of configuration
process RMs SHOULD be permitted to interact,
despite they may be deployed in different
administrative domains and be supervised by
different ROs. In case a configuration of one
resources depends on configuration of other
resources in different domain, and those
resources are of the same type, the RMs can
interact directly, without intermediate
supervising ROs. This situation can occur e.g.
while setting up transport network connectivity
and domains must agree common VLAN
identified or exchange other connection specific
attributes

UR.12

SR.2.10

Resources allocation
optimization

While searching and allocating resources, the
FELIX framework SHOULD use mechanisms
allowing optimization of resources utilization,
which are not explicitly mentioned in a user
request. Such mechanism may e.g. consider
load balancing, resources utilization levels,
overall energy consumption, etc.

UR.14

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No. 608638)

D2.2
31/12/2013

20

General Architecture and Functional Blocks

SR.2.11

Request attributes

A user slice request must contain a minimal
required set of attributes as defined by FELIX.
The FELIX framework SHOULD however allow to
specify also optional attributes, which constraint
a slice resources in more advance manner. For
transport network connection a minimal set of
information to deliver a circuit is a start point,
end point and capacity, while user can
additionally request e.g. RTT limits, or allowed
VLAN range. For SDN resource types, a user may
want to define details regarding traffic
organization specifying particular network flows
or restrictions on SDN resources

UR.15,
UR.16,
UR.19

SR.2.12

Default slice controller

The FELIX framework SHOULD deliver a default
slice controller, which can be used by a user to
manipulate resources within a particular slice. A
user however is not obliged to use this
controller and may deploy its own. The decision
must be however taken at the slice request
submission time, as proper resources holder will
be prepared.

SR.2.13

Advance reservations

The FELIX framework SHOULD support advance
reservation scheduling, where users can specify
a slice start time in the future and a lifetime
duration of a slice. This will force the framework
to analyse resources availability not only in the
moment of serving the request but also future
planning of resources usage. The time
constraints for user (e.g. the duration of a
reservation and how far in advance can a
reservation be requested) should be defined in
the form of service policy and framework should
take them as configuration item.

UR.18

Table 2.2:

SHOULD System Requirements

Requirement

Description

UR Ref.

SR.3.1

Multi-point to
multi-point network
connectivity

The FELIX framework MAY support multi-point
network connectivity for slice building. The
default method for implementing a transport
network connectivity, i.e. for multi-domain
purposes, is a point-to-point service. Providing
multi-point services will enable more scalable
configuration and allow more advanced slice
configuration.

UR.21

SR.3.2

Data replication
mechanism

Usage of multiple data storage facilities in single
slice may potentially require a synchronization
of data repositories. The FELIX framework MAY
support such synchronization and provide data
replication tools internally.

UR.23

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No.
D2.2
31/12/2013

608638)

21

General Architecture and Functional Blocks

SR.3.3 Monitoring API The FELIX framework MAY implement API of UR.22
various monitoring tools (e.g. PerfSONAR,
Nagios, etc.), which will allow to reuse existing
monitoring solutions and improve FELIX
monitoring capabilities.
Table 2.3: MAY System Requirements

Project: FELIX (Grant Agr. No. 608638)

Deliverable Number: D2.2

Date of Issue: 31/12/2013

22

General Architecture and Functional Blocks

3 Related Work and Testbed Analysis

This chapter discusses some existing Fl initiatives and infrastructures relevant to FELIX and analyses the related
outcomes and architectural approach with respect to the FELIX design goals.

3.1 Survey of European and Japanese testbed architectures

In this chapter, the main aspects of some FIRE (EU) and RISE (Japan) projects are summarized with focus on the
proposed architecture, the interconnections between the different testbeds and the federation approaches. We
have chosen to restrict the analysis to the OFELIA, FIBRE, FED4FIRE, BonFIRE projects for the European side and
to the GridARS and RISE projects for the Japanese side.

3.1.1 OFELIA

OFELIA is a collaborative project within the European Commission’s FP7 ICT WorkProgramme. It started in Octo-
ber 2010 and ended in October 2013.

The OFELIA project created, and now maintains, a pan-European experimental network facility that allows
researchers to not only experiment “on” a real network but to control and extend the network itself in a precise
and dynamic fashion. The OFELIA facility is based on OpenFlow, an emerging networking technology that allows
virtualization and control of the network environment through secure and standardized interfaces.

Ten interconnected islands, based on OpenFlow hardware infrastructure, form a diverse OpenFlow infrastruc-
ture that allows experimentation on multi-layer and multi-technology networks. OFELIA's objective is to provide
experimental facilities which allow for the flexible integration of test and production traffic by isolating the traffic
domains inside the OpenFlow enabled network equipment. This creates realistic test scenarios and facilitates
the seamless deployment of successfully tested technology into the real-world.

The overall, high level system architecture for OFELIA can be divided into 2 layers -- as illustrated in Figure
3.1. From bottom to top:

Island/NOC User User Island/NOC IslandNOC

Control Manager Manager Staft

Framework
Layer

OFELIA OFELIA OFELIA OFELIA

Infrastructure
Monitoring and
Management

Experimental Experimental

Control and Control and

Management Management
Tool Tool

Infrastructure
Monitoring and
Manage ment

Physical
Layer

Figure 3.1: OFELIA High Level System Architecture

¢ Physical layer: comprises the computing resources (servers, processors) and network resources (routers,
switches, links, wireless devices and optical components). We identify this as the physical substrate, which

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 23

General Architecture and Functional Blocks

is composed of these computing and network resources, the connectivity between them and the physical
topology itself. These resources are accessed by the OFELIA Control Framework to achieve its experimental
facility objectives. Since the technologies and components used in the physical substrate do evolve with
time as new innovations arise, OFELIA aims to keep track of the technology evolution and accommodate
the appropriate changes to the facility throughout the life time of the facility.

¢ Control Framework layer: contains the whole control framework components, which manage and mon-
itor the applications and devices in the physical substrate layer. The Aggregate Managers and Resource
Managers are placed here. This layer can be further divided in its components:

— the Expedient is the GUI and allows the connection and federation with different Aggregate Man-
agers via its plug-ins

— the Aggregate Managers enable experimenters to create both compute and network resources via
the VT AM and OF AM respectively

— the Resource Managers do directly interact with the physical layer, provisioning computes (XenServer)
or flow rules to establish the topology (FlowVisor)

We could also consider a hidden and higher level in the user flow that is performed by humans. It is there
where the policies for the usage of the facility are defined. For that matter, the Network Operations Centre
acts as the first point of contact for all technical and non-technical issues relating to the facilities and experi-
menters/researchers who will use the OFELIA facility, deciding policies on the resources and the grant or denial
of requests.

For further details on the architecture, please refer to Appendix A.

3.1.2 FIBRE

The FIBRE (Future Internet testbeds and experimentation between BRazil and Europe) project aims to design, im-
plement and validate a shared Future Internet research facility, supporting the joint experimentation of European
and Brazilian researchers.

The FIBRE infrastructure is a federation of testbeds distributed across Europe and Brazil. The FIBRE-EU system
connects the OpenFlow-based testbeds developed in Barcelona (i2CAT) and Bristol (University of Bristol) which
are managed by the OFELIA control framework. Moreover, it incorporates the NITOS testbed deployed at Uni-
versity of Thessaly, which is composed by several wireless nodes based on commercial WiFi cards and Linux open
source drivers. On the other hand, the FIBRE-BR testbed includes nine Brazilian partners interconnected using
private L2 channels. The VLAN-based L2 physical link between Europe and Brazil is provided by GEANT, Internet2
and RedCLARA.

The whole infrastructure is managed by different kinds of control and monitoring framework (CMFs). Indeed,
FIBRE includes and enhances testbeds from other projects like OFELIA, OMF and ProtoGENI, which has been
modified with the necessary software components to align their northbound interface to Slice-Based Federation
Architecture (SFA) specifications [4].

The FIBRE architecture is composed by several multi-layer building blocks, as follows:

e Authorities. The FIBRE project has chosen to have two top-domain authorities, the first under the re-
sponsibility of Brazil and the latter under Europe responsibility. These inter-connected authorities can
inter-operate to allow the federation of BR and EU sites.

¢ SFA Registry. The SFA Registry is a database able to store the information related to users and projects. It
should manage the certificates provided by the authorities.

e Portal. MySLICE tool is the graphical (web) user interface chosen by FIBRE. Refer to Table 3.1 for details.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 24

General Architecture and Functional Blocks .

e SFA gateway. The SFA gateway is designed to translate the user's requests to SFA-based requests which
are aligned to the GENI (version 2 or 3) API. The SFA gateway also provides slice management functions.

e Aggregate managers. FIBRE reuses the Aggregate Managers (AM) already developed in OFELIA projects
related to OpenFlow (OPTIN AM) and Xen-based (VT AM) resources and introduces a new AM to manage
optical switches (ROADM) devices.

The following Figure 3.2 depicts the FIBRE architecture:

Top
; Public Internet
Registry Authority

Private network (VPN)

GUI+CH

Plugin sys

OWN API OWN API

VT AM OPTIN AM NITOS SFA Wrapp

Figure 3.2: FIBRE Architecture

For further details, please refer to Appendix A.

3.1.3 Fed4FIRE

Fed4FIRE offers a common federation framework for Future Internet Research and Experimentation facilities that:

¢ |s adopted by different communities (experimentation facilities, experimenters, academia, industry)

e Supports powerful experiment lifecycle management (including tools for discovery and reservation, exper-
iment control, measurements, etc.)

e Supports key aspects of trustworthiness (federated identity management and access control, accountabil-
ity, SLA management)

For experimenters, Fed4FIRE facilitates the creation of experiments that break the boundaries of the different
FIRE domains (wireless, wired, OpenFlow, cloud computing, smart cities, services, etc.) and easily access all
of the required resources with a single unified account. It allows experimenters to focus on your core task of
experimentation, instead of on practical aspects such as learning to work with different tools for each testbed,
requesting accounts on each testbed separately, etc.

The Fed4FIRE architecture is made up of a number of components. In Figure 3.3, we describe the components
of the architecture in a resource discovery, requirement, reservation and provisioning scenario. The architecture
consists of 4 layers: testbed resources, testbed management software, broker services and experimenter tools:

¢ The bottom layer of Fed4FIRE is composed of the the physical testbed resources (servers, virtual machines,
switches, sensors, services, etc).

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 25

General Architecture and Functional Blocks .

¢ On top of this, the testbed management software manages these resources. In addition, the testbed users
and experiments are present at this level.

¢ The third tier of Fed4FIRE is a ‘broker services’ layer which contains services run by 3rd parties or the feder-
ation itself. These broker between the testbeds and the experimenters. For example, a broker reservation
service will seek to match the resources demanded by an experimenter and the availability of these within
the testbed. An orchestration service or a portal is also considered to be a broker.

e At the top of the Fed4FIRE architecture, the experimenter tools/user interfaces are found. These are
deployed on the experimenter’s computer and are used by the experimenter to communicate with the
testbed management frameworks, testbed resources and brokers.

Each software component depicted in the Figure 3.3 has an interface describing how other components can
communicate with it. Identical interfaces are annotated with the same color. Therefore when there are differ-
ent colors present on some components, this means that they expose different interfaces. The arrows between
components show the interactions. In the vertical columns of the picture, three administrative domains are en-
visioned: testbed A, testbed B and the federation facilitator. These three domains refer to logical locations, not
physical ones. So testbed A resources can be distributed over multiple locations (e.g. PlanetLab), but the manage-
ment of that testbed is under a single administration. The same holds for the federation facilitator: components
can be distributed over multiple datacenters, but they are under a single administration entity. This however
does not exclude the possibility that 3rd parties will arise with additional facilitation functionalities. Besides, it is
also possible that the federation facilitator is mirrored across different domains to introduce redundancy, which
could be valuable in case of failure or discontinuation of the main federation facilitator.

"""""
—_——

——

~——
\ .~y Tmmeell)
N ~~,~~ ________ lF'> HTTP !
K S~ | Future reservation f:
\\ s‘~\ | @ broker
\ ~
| o
AN Seeo | Portal zek
\\ “~~| (portal feddfire.eu) Tool directory

Ay
\ I
\\ | Testbed f; Certlﬁcateg' Identlty
\\ : dlrectory directory prowder

Brokers

Identity -
provider

Discovery, reservation, ?‘g
provisioning J
I

]
': Grant access?

i ___| Rules-based ?:
authorization

Testbed A

Discovery, reservation, Féé;j”
provisioning J

N

Grant access? ‘\

Testbed B

Testbed

Federation facilitator

Figure 3.3: Proposed architecture for discovery, requirements, reservation and provisioning

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

26

General Architecture and Functional Blocks

Figure 3.3 also demonstrates how Fed4FIRE has adopted a distributed architectural design. Components
can be identified at the testbed location, at the federation facilitator, and at the experimenter level (in this case
different experimenter clients tools). One of the main design principles of the architecture is that components
belonging to the federation facilitator are only intended to make operation and usage of the federation more con-
venient. They may never be actually necessary for a correct operation of the federation. F4F call these ‘brokers’,
as they provide ‘brokered’ access between experimenter tools and the testbeds.

For further details, including information on Fed4FIRE monitoring, measurement and experiment control,
please refer to Appendix A.

3.1.4 BonFIRE

The BonFIRE (Building service testbeds for Future Internet Research and Experimentation) project provides a
state-of-the-art multi-site cloud facility for applications, services and systems research in the Internet of Services
(loS) community. The infrastructure, composed of 7 geographically distributed testbeds across Europe, gives a
controlled access to heterogeneous resources (compute, storage and networking) to researchers who can benefit
of the necessary control and monitoring tools for a detailed experimentation of their systems and applications.

The BonFIRE framework manages the physical and virtual resources which can be easily created, updated and
deleted. Moreover, the available physical hardware (162 nodes/1800 cores) can be automatically configured or
reserved “on-demand”. The entire system is monitored providing single or aggregated metrics at resource and
infrastructure level (e.g. CPU usage, packet delay).

To fulfill these requirements, BonFIRE adopts an architecture composed by several elements which expose
their functionalities through well-defined APIs. The main components are the following:

¢ The Portal and the CLI tools offer the user interface to request virtual infrastructures and show the running
experiments, the available resources at each testbed site, the monitoring information, etc...

e The Experiment Manager provides an interface to schedule, plan and orchestrate the execution of an
experiment.

¢ The Resource Manager provides an interface to create, manage and terminate compute, storage and net-
work resources, which may physically reside at any testbed in the BonFIRE system.

¢ The Enactor allows the decoupling of the specific implementations of the testbed APIs from the BonFIRE
Resource Manager providing a unified interface.

BonFIRE has also addressed the issues related to the interconnections between different sites. Instead of
relying on the best-effort Internet connectivity, the cloud resources belonging to different testbeds can be inter-
connected through a dedicated network system which offers a Bandwidth on Demand (BoD) service. This service
is provided through the interconnection between some BonFIRE testbed sites and the GEANT Bandwidth-on-
Demand system (AutoBAHN). BoD services are described in BonFIRE through a new OCCI resource (the site-link)
and they are managed through a dedicated adaptor implemented within the enactor component.

The Figure 3.4 gives an overview of the adopted BonFIRE architecture which includes the Cloud-to-Net (Au-
toBAHN) services. For further details, please refer to Appendix A.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 27

General Architecture and Functional Blocks

Monitring
dashboard

(Used by Portal,
Experiment
Manager, Broker

Experiment Manager and Testbeds)

(o)
[=/

as new type of OCCI
resource

Message
Queue

Cloud-to-network adapta

s . M
;[cloudto-netlF | —=x Enactor
' plugin N
1\ (client-side) J .
* naEsEEEEEESEEEEEEE NN RAS hanus’ occl Scheduling Accounting [{ Reservation

Testbed

Monitoring Y Monitoring
GU

VM VM

Cloud-to-net IF
(Net side)

Gateway

(Monitoring.
Aggregator)

Controlled
network

Figure 3.4: BonFIRE Architecture with Cloud-to-Net extensions

3.1.5 GridARS

GridARS[21] is a reference implementation of the Open Grid Forum (OGF) Network Services Interfaces (NSI),
Connection Service (CS) protocol standard, developed by AIST. The CS protocol version 2 is a Web services-based
interface to reserve, provision, release and terminate a service, such as a end-to-end connection, via a two-phase
commit protocol. GridARS can coordinate multiple resources (services), such as a network connection, virtual
machines and storage spaces, via the CS protocol in order to provide requesters with a virtual infrastructure,
which spans several cloud resources, provided by multiple management domains including commercial sectors.

Figure 3.5 shows a resource management configuration assumed by GridARS; Domain A and B denote net-
work domains managed by different administrative organizations. GridARS modules could be configured in a
coordinated hierarchical manner, or in parallel, where several resource coordinators denoted by GRS compete
for resources with each other on behalf of their requesters, such as users and applications.

GridARS provides three service components:

e Resource Management Service (RMS)
¢ Distributed Monitoring Service (DMS)
e Resource Discovery Service (RDS)

Resource Management Service (RMS) is based on NSI CS and consists of Global Resource Coordinators (GRCs)
and Resource Managers (RMs) for Computers (CRM), Networks (NRM), and Storage (SRM). Coordinating with
GRCs and RMs, RMS enables to coordinate heterogeneous virtual resources on multiple cloud environment. GRC
has a co-allocation planning capability, which determines a suitable resource allocation plan.

Distributed Monitoring Service (DMS) allows requesters to monitor the virtual environment allocated to
them. DMS does not have a central database, but gathers distributed monitoring information, tracking the hier-
archical RMS reservation tree using the reservation ID, automatically. DMS consists of Aggregators (DMS/A) and

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

28

General Architecture and Functional Blocks

User / Application

Global Resource
Coordinator (GRC)

CRM .
= 2 NRM
SRM
] Domain B

Figure 3.5: GridARS resource management configuration.

Collectors (DMS/C). DMS/A gathers monitoring information from related DMS/As or DMS/Cs distributed over
multiple domains, and provides the information to the requester. Each DMS/C monitors the reserved resources
periodically, filters the monitoring information by the domain policy, and provides the requester with the autho-
rized information.

Resource Discovery Service (RDS) collects static resource information items from each resource domain and
provides the aggregated information. The RDS implementation is based on Catalog Service Web (CSW), defined
by Open Geospatial Consortium (OGC), which is an online XML-based database. Each resource domain can POST
its static resource information, such as network topology, number of VMs, and storage spaces.

For further details, please refer to Appendix A.

3.1.6 RISE

Since 2009, JGN-X have been working on developing a nation-wide OpenFlow testbed: RISE (Research Infrastruc-
ture for large-Scale network Experiments). The RISE project is successfully running an OpenFlow testbed over
JGN-X, fully utilizing its wide-area coverage from US West coast to Southeast Asia. RISE provides a wide-area
OpenFlow network composed of hardware OpenFlow switches. It also provides the RISE OpenFlow Controller
based on Trema and developed by NEC. Also researchers and developers can try their own OF controller on the
RISE network for their experiment. SDN or Cloud developers can also try their own software experiments with
the dynamic network provisioned by the RISE controller. Currently, RISE has 11 sites in Japan, and three sites
overseas (see Figure 3.6). For each site, RISE has a number of OpenFlow switches and two VM servers (Japan
domestic only). Currently, there is no control framework or portal. As such, the FELIX control framework will be
a great contribution to the existing testbed.

New RISE architecture for data-plane

Through the operation of RISE testbed, the RISE team encountered the following scalability issues:

¢ Unevenly distributed OpenFlow switches: Administrators cannot assign OpenFlow switches for users to fit
their required topology. Users concentrate in sites which have multiple links. For example, if user requests
four OpenFlow switches with a loop topology, they can only be hosted in one of four sites.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 29

General Architecture and Functional Blocks .fCll)(

StarBED Sendai

To Los Angels
Okayama K

Fukuoka
Nagoya

Osaka

To Bangkok, Singapore

Figure 3.6: Global RISE testbed infrastructure

e Number of users: A multi-user environment is implemented using VSI (Virtual Switch Instance). The maxi-
mum users supported by this is 16 and therefore, only 16 users can share single physical OpenFlow switch
at a maximum.

Figure 3.7: Implementation by rewriting MAC addresses

Currently, work is focusing on remedying the inability to freely create topologies using the given OpenFlow
switches, particularly as this can constrain a user’s experiments. To solve this issue, they design and discuss topol-
ogy management system called “RISE3.0”, which uses OpenFlow. In RISE 3.0, a “topology-separation function”
is implemented which separates physical links and neighbour links between OpenFlow switches. This provides a
more flexible experimental network. In order to realize the "topology-separation function", they introduced the
concept of a logical path with MAC address rewriting. Actually, in the RISE controller, a logical path is defined by
set of physical links. MAC addresses are then rewritten to guarantee the uniqueness of the packet in RISE OFSes

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 30

General Architecture and Functional Blocks

(Figure 3.7). The controller employs the address rewriting method to forward packets. It identifies flows with
only the MAC address and VLAN ID (user ID). With this method, the OpenFlow switch can utilize the hardware
processing path to forward packets without impacting performance. For further details, please refer to Appendix

A.

3.2 FELIX Considerations

The table below summarizes the architectural elements giving a brief description of their objectives and functions.
Moreover, the FELIX Considerations column is introduced for a future reuse of the element in the FELIX software

framework.

Architecture
Element

Brief Description

FELIX Considerations

OFELIA

Expedient

Expedient is a pluggable, centralized GENI
framework Graphical User Interface. It
works on top of the OFELIA Control
Framework and therefore allows to:

¢ to access OCF functions: setup,
(de)allocation and monitoring of the
experiment resources within the
OFELIA facility

¢ to connect with Aggregate Managers
through related plug-ins to display,
provision and configure physical or
virtual resources

¢ the experimenter to manage
projects, slices and permissions

¢ the admin to manage users, add
aggregates and approve project
creation requests

Technical: web application developed with
Python and Django; requires Apache2

FELIX could use Expedient for its
extendable architecture. It should enhance
the module with new plug-ins for the new
FELIX resources (e.g. inter-datacenters
aggregate manager).

Aggregate
Managers

This layer includes entities for the
management and aggregation of
homogeneous resources:

¢ VT-AM: for the management of
virtual machines on Xen-based
servers

¢ Opt-in manager/FOAM: for the
management of OpenFlow-based
switches

Technical: need XenServer and FlowVisor
RMs, respectively

FELIX could reuse VT-AM and
Optin-Manager to virtualize compute and
network resources taking advantage of the
underlying technology (XenServer and
FlowVisor). FELIX should extend this layer
with new aggregates (e.g. inter-datacenters
connectivity aggregate manager).

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No. 608638)
D2.2
31/12/2013

31

General Architecture and Functional Blocks

Resource
Managers

Resource Managers manage physical
resources (servers, OpenFlow switches,
optical devices) using dedicated interfaces:

¢ FlowVisor is a transparent proxy
between OpenFlow switches and
multiple OpenFlow controllers. It is
used to create “slices” of network
resources enforcing isolation
between each slice.

e XenServer is an open source
virtualization platform for server
virtual infrastructure.

FELIX could reuse the resource managers
tools for their high quality and stability.
Those seem to be completely in scope with
the FELIX architecture.

FIBRE

MySlice

MySlice is a resource management tool
used to list, filter, and reserve resources
made available through the SFA control
framework. It is a web framework based
on a independent plugins and shared
messages interface. The plugins provide
operations for query editing, data display
and resource allocation

FELIX must provide a graphical user
interface (GUI or WUI). MySlice is a good
candidate to became the FELIX portal for
its strong relationship with SFA
specifications. Its SFA-registry could be
used for AA (or AAA) services.

Expedient

Similar to OFELIA.

See OFELIA section (Expedient).

Aggregate
Managers

Similar to OFELIA but with some additions,
such as a common northbound SFA
interface for the following:

¢ VT-AM: for the management of
virtual machines on Xen-based
servers (being adapted to AMsoil)

¢ Opt-in manager: for the
management of OpenFlow-based
switches

And also another aggregate:

¢ Roadm-AM: for the management of
the Roadm optical devices (based on
AMsoil)

Technical: need XenServer, FlowVisor and
OpenNaa$S RMs, respectively

See OFELIA section (Aggregate Managers).

Resource
Managers

Similar to OFELIA, but including:

e OpenNaaS is an open source
platform for the provisioning of
network resources. It provides
services for the deployment and
automated configuration of network
infrastructures.

See OFELIA section (Resource Managers).

Project:

Date of Issue:

Deliverable Number:

FELIX (Grant Agr. No. 608638)
D2.2
31/12/2013

32

General Architecture and Functional Blocks

Enhanced
Nox-controller

Enhanced Nox-controller is an
enhancement of the NOX-classic OpenFlow
controller used for network discovery and
OpenFlow-based switches management. It
can install/remove flow-entries in the
underlying switches and retrieve OpenFlow
monitoring information. It communicates
with F-PCE module for a path computation
inside a physical or virtual topology. It is
based on the "old" Zaku branch of the
NOX-classic

FELIX should use one of the latest SDN
controllers (e.g. OpenDaylight) to manage
OpenFlow switches. The NOX-classic (old
zaku branch) is now deprecated and is
recommended to use POX (python version)
or the new version of NOX (only C++ code).

Flow-aware F-PCE is based on the IETF PCE architecture | FELIX should use a single path computation
Path [16]. The module is responsible for the entity for setting up SDN slices and for
Computation composition of the network services connections between SDN islands. FELIX
Engine related to the end-to-end flow routes. Itis | should extend F-PCE with the “slices”

a centralized entity providing algorithms information and the real-time resource

for the path computation including the utilization (intra and inter data-centers).

involved OpenFlow-based switches and the

related flow-entries needed for the circuit

activation. The code is closed by a NXW

proprietary license.
FED4FIRE
Portal Entry point that allows to register and See FIBRE section (MySlice).

check the discovered available resources,

as well as allocation and provisioning.
Identity Global registry of the federated users. May | FELIX could benefit from inspiring or
provider be overridden by a local instance. adapting the local-if-not-global schema for

the provider/registry.

Testbed Lists info for all the federated testbeds, FELIX could add this feature to improve the
directory whether readable for humans (website) or | information offered, either for provisioning

computers (list of URIs).

or monitoring purposes.

Tool directory

Gives an overview of available tools for the
experimenters (website, through portal).

FELIX could add this feature to improve the
information offered to its experimenters.

Certificate Exposes a centralized repository of the FELIX should check if this approach is more
directory trusted root certificates for the federated suitable to register the federation
facilities. certificates, rather than the SFA

Registry/DB.

Future Facilitates future reservations of resources | FELIX should not integrate this

reservation by finding and allocating the right time functionalities inside the portal. Check

broker slots and resources over multiple testbeds. | instead whether to implement life-cycle
checks and orchestration on a dedicated
component or to replicate this in the
hierarchical ROs

Monitoring Measure data for facilities, infrastructures FELIX could inspire from this to implement

tools and experiments. monitoring at different levels for both
infrastructures, experiments and resources

Project: FELIX (Grant Agr. No. 608638)

Deliverable Number:
Date of Issue:

D2.2
31/12/2013

33

General Architecture and Functional Blocks

OMNI Omni is a GENI command line tool for FELIX could use OMNI as CLI tool in case it
reserving resources at GENI Aggregate decides to use GENI as a communication
Managers (AMs) via the GENI AM API. The | standard.
Omni client also communicates with
Clearinghouses (also known as Control
Frameworks or CFs) to create slices, and
enumerate available GENI AMs. A
Clearinghouse is a framework of resources
that provides users with GENI accounts
(credentials). Users can use these
credentials to reserve resources in GENI
AMs
SFI SFl is another command line client for SFA FELIX could use SFl as CLI tool in case it
interfaces for Discovery, reservation, decides to use SFA as a communication
provisioning and releasing and slice standard.
management: create, open, update, start,
stop. It provides the functionality to create,
update and display a slice. SFl also supports
resource discovery, reservation and
provisioning. It can also be used to release
resources, and to start and stop a slice
BonFIRE
Portal The Portal provides a web graphical The Portal is strictly focused on
interface to access BonFIRE services. It experiments involving mainly IT resources,
allows to: with simple networking scenarios. FELIX
requires a more complex network
* visualize capabilities and resource virtualization and management, leading to
ayailability for the different testbed a different information model, e.g.
sites. considering network slices.
¢ specify experiments through wizard
procedures, upload of experiment
descriptor or manual resource
declaration.
¢ monitor the status and history of
running experiments.
Experiment The Experiment Manager schedules, plans | FELIX architecture does not include a
Manager and orchestrates experiments execution as | dedicated component for the management
specified in the experiment descriptors. of experiments life-cycle and orchestration,
The Experiment Manager provides an API but integrates these functionalities in the
to the Portal or other user agents, and portal and the resource orchestrator.
manages the resources associated to an
experiment through the Resource Manager.
Project: FELIX (Grant Agr. No. 608638)

Deliverable Number:

Date of Issue:

D2.2
31/12/2013

34

General Architecture and Functional Blocks

Resource The Resource Manager provides a resource | The Resource Manager is a centralized

Manager level interface to create, update and entity that does not fit well to a distributed
destroy virtual resources (compute, and federated environments. Moreover,
network and storage resources), in the adopted information model is not fully
correlation with experiments’ life-cycle. compliant with the proposed FELIX model,
The Resource Manager operates on the due to the lack of concepts related to
overall physical infrastructure and offers 3 network virtualization (e.g. network slices).
facilities for on-demand provisioning and
in-advance reservation, resource sharing
and monitoring of resource usage.

Enactor The Enactor abstracts the details of the Due to the distributed nature of the
different testbed implementations, Aggregate Managers, the Enactor
providing a unified OCCl interface towards | functionalities are not fully required in
the Resource Manager. It includes adaptors | FELIX. Moreover, the Enactor exposes a
to interact with the different cloud north-bound interface based on OCCI
testbeds (e.g. Amazon EC2, GEANT extensions which are not compliant to SFA
AutoBAHN Bandwidth on Demand service, | specifications.

FEDERICA infrastructure and
OpenStack-based cloud testbeds).

Identity The Identity Manager is used to The Identity Manager functions will be

Manager authenticate users and store their SSH covered by the SFA-registry or an LDAP
keys. It is a LDAP server. database in FELIX portal.

Message The Message Queue Server provides The exchange of messages in FELIX

Queue Server

publish/subscribe mechanisms for the
other architecture components to
exchange asynchronous messages and
events related to infrastructure
management and experiments.

architecture is still under discussion.

Collection The Collection Cache listens to events from | In FELIX architecture, these functionalities
Cache all sites to keep track of the current state of | will be embedded in the Resource
each resource. Manager.
Scheduler The Scheduler implements the in-advance Advance reservation functions have not
reservation system, keeping track of the been deeply discussed in FELIX
time-slots reserved for the different architecture.
resources
Accounting The accounting service keeps track of the Accounting functions have not been deeply
Service lifetime of resources used by the discussed in FELIX architecture.

experimenters, generating the data that
would be required by a billing system.

Authorization

The Authorization Service is used to ensure

Authorization mechanisms in FELIX are

Service that experimenters do not overuse their managed through SFA procedures.
allocated quote of resources.

Monitoring The Monitoring Aggregator provides The applicability of a Zabbix-based solution

Aggregator monitoring information at the application, | can be evaluated for the FELIX architecture.
virtual machine and infrastructure level. It However, dedicated monitoring agents
is based on the Zabbix open source should be implemented for networking
software. services.

Project: FELIX (Grant Agr. No. 608638)

Deliverable Number:

Date of Issue:

D2.2
31/12/2013

35

General Architecture and Functional Blocks

Elasticity The Elasticity Engine supports the Elasticity functions have not been deeply
Engine elasticity-as-a-service, where VMs creation, | discussed in FELIX architecture.
modification and deletion is automatically
managed depending on the current load. It
is based on Zabbix as source of monitoring
information and HAProxy/Kamalio for load
balancers
CoCoMa The CoCoMa framework allows This feature is not completely in scope with
experimenters to emulate controlled the FELIX project.
operational conditions for contentiousness
and maliciousness in shared environments
Experiment The EDM for Provenance is a tool to This feature is not completely in scope with
Data Manager | capture provenance data for experimenters | the FELIX project.
(EDM) for and reasoning about this information in an
Provenance ontological sense.
GridARS
Global GRC manages and coordinates FELIX could use GRC for coordination of
Resource heterogeneous resources. It could be Transit Network Resource Managers.

Coordinator

configured to work in different manners
(i.e. hierarchical or parallel modes)
allowing the interoperability of zones
managed by different GRCs.

Resource They directly manage local resources. The FELIX could use RMs as a wrapper of actual
Managers project defines 3 RMs: resource management systems, e.g.,
OpenStack, CloudStack and SDN
¢ Networks Resource Manager (NRM) controllers.
¢ Computers Resource Manager
(CRM)
e Storage Resource Manager (SRM)
Distributed DMS monitors the virtual environment. Itis | FELIX could use DMS to collect distributed
Monitoring a distributed system composed by monitoring information.
Service Aggregators and Collectors.
e DMS/A gathers information from
other distributed DMS/As or
DMS/Cs.
¢ DMS/C monitors, filters and
provides the reserved resources to
the requesters.
Resource RDS collects static resource information FELIX could use RDS as a resource
Discovery items from each resource domain, and discovery service of computer and network
Service provides the aggregated information. resources.
RISE
Project: FELIX (Grant Agr. No. 608638)

Deliverable Number:
Date of Issue:

D2.2
31/12/2013

36

General Architecture and Functional Blocks

OpenFlow
Controller

OF Controller is based on Trema, developed
by NEC. It provides a Logical Path System

FELIX could use the OpenFlow Controller as
base for the SDN Resource Manager,

which is a virtualization framework able to
translate the physical OF switches into
logical entities for traffic isolation. RISE
supports 2 different methods:

basically for the OpenFlow-enabled
physical switches.

¢ VLAN stacking

¢ Address rewriting

Table 3.1: Architectural Elements of Existing Testbeds

3.3 Summary

In this section, we briefly summarize the advantaged of the testbeds analyzed within this section, focusing on
what is missing (or seems to be not fully covered) in their proposed architectures and offered services.

Our analysis takes into account different modules, services and interfaces. For instance, in the OFELIA-based
testbeds there is no concept of an Orchestrator, which might be seen as a drawback in large federations. More-
over, OFELIA testbeds are inspired by SFA-like architectures where the federation occurs at the resource level,
meaning that the clients have direct access to the different Resource and Aggregate Managers. This, again, can
be viewed as a major problem for scalability within distributed architectures.

Other testbeds such as BonFIRE are mainly focused on cloud computing, therefore giving priority to comput-
ing rather than network resources. This results in a lack of a slice concept becomes complex to federate with.
However, it can provide dynamic network parameter configuration (i.e. latency) and in release 3.1, it offers band-
width on demand services by using GEANT's AutoBAHN as a third party interconnect between the EPCC and PSNC
sites (using NSI).

Meanwhile, FED4FIRE is an ambitious federation of heterogeneous testbeds, but it is still mainly focused on
how to effectively offer the different services of the testbeds, and for the most part, avoids the matter of how
to serve to the clients/users all the federated resources as a single logical plane. However, this is one focus of
current efforts within the project. Furthermore, the network connections between testbeds is fixed and cannot
be manipulated. This results in a lack of BoD.

Table 3.2 gives a schematic overview of our analysis.

Project Advantage Disadvantage

OFELIA The LDAP, as a single and centralized The inter-domain (inter-testbeds) network
element, and its credential management segment seems to be not fully integrated
logic (currently within Expedient) could be | in the developed architecture. FELIX could
extended and integrated in the FELIX cover this gap with its new architectural
framework. There is a design for a element (NSI Resource Manager).
Clearinghouse component that aims to Moreover, FELIX could orchestrate the IT &
modularize and externalize the credentials | networking resources with an higher-level
management that could be completed and | layer (Resource Orchestrator).
used in FELIX. The Control Framework
Layer (SFA-based) could be enhanced to
manage the different FELIX SDN islands.

Project: FELIX (Grant Agr. No. 608638)

Deliverable Number:
Date of Issue:

D2.2
31/12/2013

37

General Architecture and Functional Blocks

FIBRE The SFA specifications are adopted to The inter-connections between different
manage and federate testbeds. They could | testbeds are based on VPN (or other L2)
be enhanced for the different FELIX SDN technology. FELIX should provide a
islands. programmable architectural element for

the inter-domain network segments
(Transit Network Resource Manager). A
dedicated architectural element to
orchestrate resources seems to be missing.
FELIX should provide a component for this
purpose (Resource Orchestrator).

FEDA4FIRE The “broker” concept and its The interconnections between different
functionalities could be extended to allow | testbeds is covered by a dedicated
an easy discovering phase of the FELIX component that seems to be not
Resource Managers and Orchestrator. NSlI-based. Moreover, there is not

Bandwidth-on-Demand functionalities
planned. Problems such as scalability have
_ yet to be analized.

BonFIRE The network system, based on GEANT BoD | The federation concept is not investigated
service (AutoBAHN), covers the and the interfaces are not SFA compliant.
inter-testbeds connections. FELIX
architecture could adopt an architectural
element (Transit Network Resource
Manager) to provide a
Bandwidth-on-Demand services over a
network domains

GridARS & The NSI protocol and the generic The projects seem to be SFA agnostic.

RISE developed framework could be introduced | Currently, there is no control framework or
in the FELIX architecture providing a new portal. FELIX could provide a dedicated
architectural component able to manage control framework to manage their
the inter-domain network segment (Transit | OpenFlow resources.

Network Resource Manager).
Table 3.2: Overview of advantages and disadvantages of alterna-
tive approaches
Project: FELIX (Grant Agr. No. 608638)

Deliverable Number:
Date of Issue:

D2.2
31/12/2013

38

General Architecture and Functional Blocks .fCll)(

4 System Architecture

FELIX aims to provide a framework which integrates resources of different kinds (e.g. transit network, SDN, IT,
etc.) from a multidomain heterogeneous environment.

In order to implement such functionality, we need a flexible and scalable architecture which can assure a suf-
ficient level of interaction between various system components. This section introduces the core building blocks
of the FELIX architecture. Note that the detailed specification of the mechanisms, protocols, and interfaces which
will implement the user requests over the federated testbed infrastructure are not in the scope of this deliver-
able. FELIX has opted to use a hierarchical model for inter-domain dependency management, with orchestrator
entities responsible for synchronization of resources. The overall architecture is illustrated in Figure 4.1.

FELIX SPACE
? RO
.\'J% parent
. Hierarchical ROs
PHY PHY PHY PHY
RES RES RES RES

USER SPACE

Resource Control
(ie. OF Controller + IT Controller + user spplications

an slice)

Figure 4.1: FELIX overall architecture -- ROs use RM to manage physiacal resources of different types
(e.g. Transit Network, SDN, Computing Resources).

The architecture can be seen as the combination of two spaces: the FELIX Space and the User Space. Both
spaces play distinct roles in the creation and operation of each and every slice, which is created by the FELIX
Space upon a user request, and further on managed by user tools in User Space.

FELIX Space The FELIX Space relies on Resource Orchestrators (ROs), Resource Managers (RMs), and the
physical (testbed) infrastructure to provide the resources needed for realizing a user slice. Resource Orchestrators
(ROs) are stateful entities, which receive user requests and can either serve them directly or determine which
other RO or Resource Manager (RM) can serve the request. In effect, an RO can decide to delegate whole or part
of a user request to another RO or a specific RM. Each RM typically manages a specialized type of resources. For
example, a RM may oversee the exact network resources in an SDN island, port interconnection across islands, as
well as computing and storage resources within a single administrative domain. We expect that each domain may

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 39

General Architecture and Functional Blocks

have one RO and several RMs, although this is an administrative and operational policy issue primarily. Similarly,
all RMs within a single domain should have single RO supervising them and be located at the bottom of the RO
hierarchy. Note that an RO may not have RMs associated with it. An RO may act as a resource aggregation agent
and can thus represent multiple administrative domains as one resources set to FELIX users.

In relation to single administrative domain, a RM can operate in single domain only (see Figure 4.1). It can
however perform inter-domain operation, e.g. by peering with RM in adjecent domains. All RMs in single domain
must be supervised by single RO, which is as well single domain scoped, yet it requires the ability to perfom inter-
domain operations. The ROs which has no direct RM associations but controls one or more other ROs in a tree
model (see RO Parent on Figure 4.1), are considered to be inter-domain entities, as their range of responsibility
is not linked with single domain only.

The proposed architecture aims to scale easily: one can always add new RO(s) and/or new RMs under any RO,
as needs arise. Further, the mechanisms proposed in this document will enable new installations to easily adopt
and extend whole FELIX infrastructure. The preferred way of communication between ROs is a tree model, where
ROs follow the defined hierarchy in order to contact each other. We foresee that horizontal communication will
be limited. Optionally, however, the architecture permits a peering model, where ROs can contact each other
directly, without the need of inter-mediation. The choice of communication manner is up to the implementation
and the practical needs of specific deployments of the FELIX architecture.

In the FELIX architecture, a user of the federated testbed infrastructure always sends the requests to an RO
(typically using a graphical user interface or through the use of a programmatic interface) and does not communi-
cate directly with RMs of any domain. This unique entry point into the RO hierarchy guarantees that the request
will be processed (and delegated as needed) by the most appropriate ROs and RMs. This design approach aims
to ensure that the valid administrative domains and resource pools will be designated to implement a user slice.
As each user slice may comprised of a set of resources which are of different type, multiple RMs, either in a single
or multiple domains, may be involved in realization of user request.

User Space The User Space consists of any tools and applications that a user wants to deploy to control
a slice or execute particular operations within it. The selection of tools is completely dependent on the user
requirements and his/her decisions and is out of the FELIX management framework scope. Each user slice defines
the boundaries of the user-controlled environment. The slice also guarantees isolation of this environment from
the physical resources and other user slices. As many use cases scenarios discussed in [FELIXD2.1] require SDN
resources to be committed into a slice, an example of a user tool may be an OpenFlow controller, which will enable
users to configure SDN flows within a slice according to their needs. Another example is, say, an IT Controller,
which can provide remote access to servers, clusters or data storage facilities included in a slice.

The following sections explain in more detail the functionality and business logic of the particular components
of the architecture in both the FELIX and User Spaces, and their dependencies.

4.1 Concepts and Definitions

This section revisits the concepts and definitions introduced in [20] as we proceed in describing the overall FELIX
architecture and the core functional building blocks.

We briefly introduce the main concepts related to the physical distributed infrastructure of the FELIX facility
which is organized into multiple administrative domains. Basically, an Administrative Domain is a service secu-
rity provider that holds security repositories and authenticates and authorizes clients with credentials safely and
easily. In the FELIX infrastructure, every administrative domain could be controlled and managed by different ar-
chitectures and interfaces: Software Defined Networking (SDN) [17], [11] and Transit Network Service (TNS) such
as Network Services Interface Connection Service (NSI-CS)[22], [8]. The "FELIX physical network infrastructure
concepts" subsection is consequently focused on these technologies.

In the FELIX vision, the interconnected experimental facilities are federated, so that multiple virtual infras-
tructures spanning across several domains can be delivered to the user as isolated set of integrated resources.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 40

General Architecture and Functional Blocks

The FELIX architecture adopts Slice-based Federation (SF) to fulfil this requirement. The "Slice-based Federation
concepts" subsection presents the key concepts related to slice-based federation and some details about the
architectural components which will be imported and enhanced in the FELIX architecture.

Finally, the "FELIX architecture definitions" subsection provides the terminology adopted to identify the main
elements of the FELIX architecture, which are conceptually based on the previous concepts and definitions (i.e
SDN, TNS, SF). This subsection could be used as reference when reading the detailed description of each single
component in the next chapters.

4.1.1 FELIX physical network infrastructure concepts

FELIX infrastructure includes distributed facilities able to manage and control computing/storage (CR) and net-
working (NR) resources. Each network facility can be organized as a set of SDN-controlled network domains. The
different experimental facilities are interconnected through TNS-controlled network domains with the scope to
enable the inter-domain connectivity.

Software Defined Networking (SDN) is a relevant new term for the programmable networks paradigm, as
discussed in [17]. In short, SDN refers to the ability to use software to program individual network devices dy-
namically and therefore control the behaviour of the network as a whole [15]. The separation of the network
control plane, which oversees several devices, from the forwarding plane (the data plane) serves as a foundation
for a dynamic, easily manageable, cost-effective, and adaptable architecture. As the network control becomes
directly programmable, the underlying infrastructure can be abstracted for applications and network services,
reducing the dependency on the manufacturer. In many cases, SDN is identified with the use of a particular pro-
tocol (e.g. OpenFlow) to allow the communication between the control plane and the data plane, but the truth
of the matter is that SDN concepts are far more general. For the particular SDN definition advocated by the Open
Networking Foundation please see [11].

The basic unit of the FELIX architecture is the concept of resources (NR & CR): network (switches, routers,
optical devices..) and computational (physical server or VMs, storage, blocks, objects...) resources. The SDN
mechanisms are adopted to organize the physical network resources in a variety of SDN zones. In FELIX termi-
nology, a SDN zone is a set of resources grouped for homogeneity of technologies and/or control tools and/or
interfaces (e.g. L2 switching zone, optical switching zone, OpenFlow protocol controlled zone or other transit
domain zone with a control interface). The major goal of defining SDN zones is to implement appropriate policies
for the availability, scalability and control of different resources in a SDN island. An SDN jsland is defined as a set
of virtualized NR and CR under the same administrative ownership or control (an administrative domain).

The different SDN islands can be grouped in the Future Internet (FI) experimental facilities (or SDN-controlled
network domains). The Fl experimental facilities are controlled by dedicated software, which exposes interfaces
which can be used by a federation framework to orchestrate resources in a multi-domain environment.

Finally, the overall FELIX infrastructure is composed by several (distributed and federated) FI experimental
facilities physically interconnected using TNS-controlled domains.

In FELIX architecture, the network domain (or network domains) which connects the distributed experimen-
tal facilities will use the Transit Network Service (TNS) to offer the automated and on-demand control of the
connectivity services and, optionally, enable inter-domain topology exchanges. NSI-CS is one of the TNS which
can be used in the FELIX implementation. The NSl is under standardization within the Open Grid Forum (OGF) NSI
Working Group, which has also defined a general framework to deliver network infrastructures as a service and a
Connection Service protocol to enable the automated creation of network circuits in multiple and heterogeneous
domains. Moreover, the NSI framework supports the federation concepts, as fully described in the "Transit Net-
work Resource Manager" section of this document. In FELIX, the Transit Network Service protocol will be used to
orchestrate the resources in the TNS-controlled network domain and establish inter-domains connectivity with a
specific granularity. This approach allows to create experiments spanning resources from different domains and
continents and requires the deployment of an Agents of TNS within islands and TNS-controlled network domain.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 41

https://wiki.man.poznan.pl/felix/index.php/___Manager
https://wiki.man.poznan.pl/felix/index.php/___Manager

General Architecture and Functional Blocks

The Figure 4.2 gives a graphical representation of the FELIX network infrastructure concepts.

Fl-¢ n / TNS-controlled e 211
A \\ domains // B

SDN island

SDN island

SDN island

SDN island

SDN Zone ‘ ’ SDN Zone
SDN Zone ‘ ‘ SDN Zone

SDN Zone SDN Zone
CR & NR CR & NR
(computational & network resources) (computational & network resources)

Figure 4.2: FELIX physical network infrastructure concepts

4.1.2 Slice-based Federation (SF) concepts

In FELIX, the administrative domains corresponding to the distributed infrastructures are federated to compose
multiple and isolated FI experimental facilities. SFA and NSI Framework are among the architectures which can
support FELIX system requirements.

SFA v2.0 specification [10] is one of the SF protocol and interface which can be used in the FELIX implemen-
tation. SFA v2.0 defines a control framework architecture to allow a federation of slice-based network substrates
to interoperate. In this context, SFA identifies two authority roles for the control and management of a federated
system:

¢ Management Authority (MA): responsible for a subset of physical components and ensures the proper
behaviour of the components (that is, that hose execute the resource allocation accordingly)

e Slice Authority (SA): responsible for the registration and control of one or more slices as well as managing
the user access to the slices

In FELIX, SFA can be used to provide a federation framework between the existing testbed management
platforms deployed at partners’ premises.
The main concepts in the SFA framework are summarized in Table 4.1.

SFA key concept Description

Resource Resources include physical resources (e.g., CPU, memory, disk, bandwidth),
logical resources (e.g., file descriptors, port numbers), or synthetic resources
(e.g., packet forwarding fast paths). Resources are described through a
resource specification (RSpec), typically expressed in XML format following
specific schemas. RSpecs are used to list (advertisement RSpec), reserve
(request RSpecs), or describe reserved resources (manifest RSpecs) [5], [4]

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 42

General Architecture and Functional Blocks

Component Components are the primary building blocks of the SFA architecture (e.g., an
edge computer, a customizable router, a programmable access-point, etc..).
Every component can encapsulate a set of homogeneous or heterogeneous
resources, depending on the nature of the component.

Aggregate An Aggregate is a set of components which are under the authority of the

same MA, which also governs the aggregate.
An Aggregate Manager is a logical element which controls and manages an

aggregate. If the aggregate contains a single component, the Aggregate

Manager could be also called Component Manager.
A sliver can be considered as a resource container, which guarantees the

isolation from every other sliver belonging to the same component. This
requirement can be fulfilled via component virtualization or partitioning the
component into distinct resource sets. Either way, the user is granted a sliver

of the component.
A user-defined subset of virtual networking and computing resources,

created from the physical resources available in federated testbeds. A slice
has the basic property of being isolated from other slices defined over the
same physical resources, and being dynamically extensible across multiple
testbeds. On top of each slice, a specific set of control tools can be

instantiated, depending on the specific domains it traverses.
Table 4.1: SFA main concepts

Aggregate Manager

Sliver

Slice

The slice concept is adopted in FELIX with reference to the experimental facilities to be provided on top of the
FELIX physical infrastructure. All the FI experimental facilities will be controlled programmatically through well-
defined interfaces by the Slice-based federation framework, which orchestrates resources in a multi-domain en-
vironment. These facilities, extending the slice concept in SFA, are composed of compute and network resources
(CR and NR) belonging to distributed SDN islands in FELIX infrastructure, interconnected via TNS-controlled do-
mains (Figure 4.3). Moreover, a slice can collect resources of different types from several SDN zones within a
single SDN island.

The SFA RSpec used in the requests is the native RSpec format of PlanetLab AMs. As of January 2012, Plan-
etlLab supports GENI v3 RSpecs, which is the recommended RSpec to use in GENI, as [5], [4].

\
v SDN Island A / I \ 4 SDN Island Z N\
domains
(N\ [Y B\ Slice 1 (Y W
SDN Zone SDN Zone
SDN Zone SDN Zone A3 .1 SDN Zone SDN Zone
Al A2 (NR) (NR) 2.2 23
(CR) (NR) (NR) (CR)
u Slice 2 |
- A
\ / @ AN J

Figure 4.3: FELIX infrastructure key concepts

A fundamental element defined in the SFA framework is the Aggregate Manager (or Component Manager)

which exports a well-defined and (remotely) accessible interface. FELIX architecture adopts and extends the SFA
concept of Aggregate Manager with the introduction of architectural elements able to manage and control the
FELIX-specific resources, in particular SDN and TNS resources (NR). In the FELIX terminology, these managers
will be (generically) called Resource Managers and will expose well-defined interfaces for resource discovering

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

43

General Architecture and Functional Blocks

and reservation. An example of SFA-based interface is the GENI Aggregate Manager API [4] which provides stan-
dardized reservation mechanisms. This interface is directly derived from the SFA 2.0 standard and is currently
implemented by several GENI projects (e.g., PlanetLab, ProtoGENI, ExoGENI, InstaGENI).

On the other hand, while the NSI CS (Connection Service) is an interface to request provisioning of a network
connection, NSI Framework itself is a general framework to reserve resources in advance, and manage provi-
sioning of the resources during the reserved period. In the architecture of the NSI, each provider’s resource is
managed by a Network Service Agent (NSA). The NSI is the service interface between NSAs. An NSA can take
on the role of a requester, a provider, or both (an aggregator). Multiple NSAs form a recursive framework of
requesters and providers. Requests can be propagated through this framework of NSAs using a tree or chain
workflow. An aggregator NSA can aggregate resources from multiple children NSAs and provide resources to the
requester. Aggregator NSA corresponds to RO in the FELIX architecture. The Figure 4.4 shows the overview of
NSI Framework.

Useragent
Requester

Resources are requested with start time
and end time (advance reservation)

:‘tNSI

Aggregator NSA

Requester
NSA A NSAB NSAC

RM:Resource Manager

Figure 4.4: NSI Framework

NSI Framework supports advance reservation of resources. An NSI reservation is created using a two-phase
commit process. In the first phase (reserve) the availability of the requested resources is checked; if the resources
are available they are held. In the second phase (commit) the requester has the choice to either commit or abort
the reservation that was held in the first phase. By this mechanism, requester can search available resources
while holding some of resources which availability has already been confirmed. If a requester fails to commit a
held reservation after a certain period of time, the provider may time out the reservation and the held resources
can be released. Using this two-phase commit process, modification of a reservation is supported. During a
reservation period, actual provisioning (activation) of resources can be controlled from the user. By sending a
provision request, the resources are activated, and by sending a release request the resources are de-activated.
De-activated resources can be re-activated by re-sending provision request.

In NSI, the concept of Service Definition (SD) is used to define characteristics of resources. In several SD have
been defined for Connection Service in the NSI-CS protocol. By defining SD for computers and storages, those
resources can be also managed by NSI Framework.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

44

General Architecture and Functional Blocks

4.1.3 FELIX architecture definitions

This section provides a brief summary of the main architectural elements, which will be described in the next
chapters. Some of these components (e.g. the Resource Managers) are conceptually derived from the SFA archi-
tecture and NSI Framework, while further new elements (e.g. the Resource Orchestrator) have been introduced
to add innovative features like automated resource coordination and end-to-end service provisioning.

Table 4.2 gives an overview of the FELIX architectural components.

Architectural component | Description

Resource Orchestrator Architectural component responsible for the orchestration of the end-to-end,
(RO) multi-domain service in the federated infrastructure. It coordinates the
reservation and allocation of heterogeneous network and compute resources
in each segment. Those resources are described through a common language,
which can represent CR and NR characteristics and their constraints.

Resource Manager (RM) Component in charge of controlling a specific type of resource, being the
equivalent of the SFA Aggregate Manager and NSA in NSI Framework. FELIX
defines two types of RMs: the TN RM and the SDN RM, to manage TN and SDN
virtual resources respectively. In particular, the SDN RM will control the
OpenFlow-based L2 resource in the access domains, while the TN RM will
interact with the TNS-controlled domain for on-demand provisioning of

connectivity in the transit segment.
Monitoring framework Collects and manages monitoring data from infrastructure slices and

experiments, including information retrieved from the different SDN islands

and from the transit domains, in terms of performance of the established

connectivity services. The monitoring framework is expected to interact with

the Resource Orchestrator for providing aggregated measurements.

Slice Resource Controller Element in charge of managing the creation, modification and deletion of slices

related to the experiments (including all functionality, APls and applications).
Table 4.2: FELIX architectural components

4.2 Architectural Building Blocks

This chapter defines the roles, responsibilities and dependency of the FELIX framework components. It is divided
into two sections, which focuses on FELIX and User Space and functions available in particular spaces. In general
the FELIX Space responsibility is to manage resources and provide slice to the end users, while User Space tools
allows end users to control their slice environment and execute their scenarios.

4.2.1 Management and Orchestration Architecture

The Management and Orchestration components instantiates the FELIX Space environment, providing end users
and administrators with tools to manage the resources, maintain them and implement users' slices over them.
This space consist of the following main components:

e Resource Orchestrator

e Resource Manager, i.e. Transit Network Resource Manager, SDN Resource Manager, and Computing Re-
sources Manager

e Monitoring
e User Access/GUI

The components are explained in the following chapters.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 45

General Architecture and Functional Blocks

4.2.1.1 Resource Orchestrator

The FELIX Resource Orchestrator (RO) is a key functional element of the FELIX architecture, as a whole, and the
centerpiece of the management and orchestration system design, in particular. In short, the FELIX Resource Or-
chestrator is responsible for orchestrating the end-to-end network service and resource reservations, possibly
including relevant CR services, for the entire FELIX federated infrastructure, i.e. intra- and inter-testbed wise. We
aim for an RO design that can coordinate end-to-end resource and service provisioning in a technology agnos-
tic way. Resource provisioning ensures that all required intra- and inter-testbed resources are delivered to the
requesting user for the specified period at particular locations.

We consider that the RO operates over a federated testbed infrastructure which consists of "SDN islands",
such as the OpenFlow-based research testbeds in Europe, interconnected via what we refer to as "Transit Net-
work Service (TNS) controlled domains", i.e. testbed interconnection facilities which are compatible with the
Network Services Interface (NSI) architecture [8]. Each SDN island may have several SDN Zones. Given these core
constituents, the FELIX federated infrastructure resources must be orchestrated in order to serve the use cases
defined in [20]. In order to do so, we consider that an FELIX end-to-end service, e.g. a video stream, lives within
a cross-island slice.

The key functions of the FELIX RO can be summarized as follows:

¢ The RO manages the different Fl experimental facility user in terms of resource and data access policies.

e The RO mediates between the user (e.g. an experimenter wishing to employ the FELIX federated infras-
tructure via the use of a portal) and the technology-specific Resource Managers (RMs). We expect to have
different RMs which will handle, for example, technology-dependent aspects in SDN domains and transit
network domains (TN RM), as well as compute and storage resources (CR RM). As part of this mediation,
the FELIX RO will be engaged in the creation (provisioning), maintenance, monitoring, and deletion (re-
lease) of the used resources and slices.

e The RO maintains a high-level (abstract), cross-island topological view, which summarizes the different
(CR and NR) resources available along with their inter-connections. This topology view is initialized and
updated by the underlying Resource Managers, thus implementing a distributed hierarchical resource dis-
covery function.

¢ The RO determines which domains and which inter-domain resources should be used to instantiate a given
end-to-end service for a Fl experimental facility user's slice. For example, based on a user request for a
given type of service to be instantiated in two remote islands, the FELIX RO determines which specific SDN
Zones or resource domains should be involved.

¢ The RO coordinates and ensures that the correct sequence of actions takes place with respect to the op-
eration the technology-specific Resource Managers. This includes the provisioning of the slice resources
and as per the user requirements.

e The RO collects and correlates alarms on resources, on a per-slice basis, and proceeds with reporting/notifying
the corresponding users on a per slice basis.

We note that the FELIX Resource Orchestrator operation is orthogonal to the datapath operation of different
slices and the traffic of their respective Fl experimental facility users.

The FELIX RO exposes all its functions through southbound and northbound interfaces, called FELIX Resource
Interface, and inspired to the Slicebased Federation Architecture.

These interfaces allow us to manage resources from different experimental facilities in a common abstracted
manner, using the resource description language [9] developed for the SFA [10] which can capture the charac-
teristics of a given technology domain.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

46

General Architecture and Functional Blocks .

—

[User Portal

FELIX Resource
Interface

FELIX Resource
Interface
RM Technology
specific
interfaces

PHY — NR PHY — NR

Figure 4.5: FELIX Resource Orchestrator positioning in the FELIX architecture.

With reference to a commonly accepted characterization of the IT service life cycle [6], the following phases
can be identified for a service that requires network and compute resources, as discussed in the use cases pre-
sented in [20]:

1. Service Design and Planning, during which the service characteristics, template resources, capacity and
availability requirements are identified. In addition, this phase includes the detailed description of the
relationships between the modules and components that will be involved ;

2. Service Provisioning and Delivery, during which the exact resources and correlations among them are putin
place (delivered), the specific configuration items implemented and the overall service validated through
testing before being accepted for the subsequent operation phase. Validation at this step may consist of
status checks on resources (e.g. VMs up and running, query status on circuits or L2 data paths, etc.).

3. Service Run-time Operation, during which the service is active and monitored to react to any potential
event based on its configured characteristics (dynamic updates, or more traditionally incidents, problems,
requests). Monitoring is a key function in this phase since it allows to correlate service performances
against a set of Service Level Agreements (SLA). Due to the different granularity of the monitoring data
coming from different technologies in the data plane, an orchestration function is also needed to harmo-
nize measures into a single monitoring framework and e.g. to react/orchestrate upon monitoring events
like up/down events, thresholds crossing, etc. For example, in case of a L2 switching domain controlled
via OpenFlow, the flow installation task with matching of a given classification tuple lives entirely in this
operation phase as one of the key activities under the ownership of a SDN controller; similarly, a resource
scaling up/down or migration from one island to another due to specific events like faults, time of the day,
etc. are examples of run-time operations possibly automated and without extra delivery of resources.

4. Service Termination, during which the service is terminated and all associated resources are released in
order to be available for other uses.

The resource orchestrator is involved in the following three phases: Service Design and Planning; Service
Provisioning and Delivery; and Service termination. The FELIX RO does not play any major role in actual service
operation.

The FELIX RO role in an end-to-end service life cycle is better illustrated via a walk through in an exemplary
process flow. We start with the Service Design and Planning phase as follows. Assume that an experimenter

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 47

General Architecture and Functional Blocks

(i.e. a user of the FELIX federated infrastructure) defines through the FELIX portal a cloud service specification.
For example, the user could detail the type and version of the operating system and software applications to
be used, the amount of storage required, the computing resources needed, as well as their inter-relations, such
as which applications run on which resources. In addition to this, the user will need to describe the desired
connectivity between the different components of the cloud service, i.e. define certain network parameters
that are deemed critical (and let the FELIX architecture determine the remaining parameters). Finally, the user
could specify the connectivity between the defined cloud service and the user. The cloud service description may
include QoS parameters like bandwidth and delay, or service survivability requirements (with an impact on the
recovery strategy to be adopted at the network level). Also, the user can specify automated elasticity rules that
identify the modifications to be applied in the cloud and network service topology under certain conditions (e.g.
what should be the reaction in case of changes in the traffic load or disasters).

The FELIX RO elaborates the requests received from the portal and determines the sequence of resource
domains and the characteristics of the related resources which will be required to create the end-to-end service
in terms of computing, storage, and connectivity services. During the Service Provisioning and Delivery phase
the RO interacts with the technology-specific Resource Managers to request the allocation of the assorted re-
sources in the Fl experimental facilities. Therefore, each Resource Manager implements the decomposition and
domain-specific configuration of the different abstract resources into specific resources of the SDN zone (again,
this includes network, storage and compute resources) and of the transit network. In order to achieve this, each
RM has its own decision entities (internal or delegated to a legacy technology function) to achieve better utiliza-
tion of the whole infrastructure under control. Once the request is successfully concluded, the FELIX RO triggers
the allocation and activation of the requested resources. This commit step is also mediated by the different in-
volved FELIX RMs, and uses the technology-specific interfaces exposed by the different domains, like NSI for the
transit domains, OpenFlow for the SDN domains, the APl exposed by the Cloud Management System responsible
for each involved data center for the CR domains.

In order to cope with the potential applicability of the FELIX architecture at large scale, the FELIX Resource
Orchestrator is designed to be recursive, and seamlessly interface to a user portal or another parent RO. This mode
of operation allows for establishing a hierarchy of ROs as illustrated in Figure 4.6. The parent RO coordinates the
different child ROs (attached to their RMs) taking care of the overall supervision of the summarized network and
CR topology exposed by the different ROs.

As Figure 4.6 illustrates, the user portal can alternatively decide to connect to any RO instance involved in
the planned service (e.g. the RO for the source domain, or the RO for the destination domain, or even the parent
RO).

In order to provide the possibility to transparently stack ROs hierarchically, it will be most useful to employ
the same API on all ROs. Specifically, child-ROs shall not have a different northbound API than their parents.
This recursiveness enables transparent changing of the underlying RO instances and enables the RO clients to
interface with all ROs in the same way, no matter which granularity they encompass.

We expect that the mechanisms for optimizing the service and slice state consistency across the various
ROs will be refined in further iterations of the FELIX architecture based on implementation and experimentation
experiences as the project progresses.

Moreover, the FELIX RO should cooperate with the other FELIX architectural elements (e.g. GUI/Portal) to
cover all the security aspects related to an Authentication Authorization Infrastructure (AAl). In short, it should
confirm the user's identity (authentication) and associate the identity with rights and permissions (authorization).
Through the FELIX framework, users can access services in a secure and confidential manner, simply by using e.g.
their credentials or certificates. In other words and as a general requirement, FELIX (as a multi-user service) needs
some mechanism to manage who can access the services and which actions each user can perform.

Orthogonal to the hierarchical design of the FELIX RO, all entities blend into a AAl (Authentication Authori-
sation Infrastructure). This architecture ensures, that all operations on the RO and its sub-entities are only per-
formed by authorized actors. These actors can be administrative/operational personal, experimenters or auto-

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 48

General Architecture and Functional Blocks .

[User Portal]

] [PHY~NR

Figure 4.6: Hierarchical Resource Orchestrator in FELIX

mated actors. In order to secure the system against accidental misuse and malicious attackers, FELIX implements
functions for authentication, authorization and accounting. For authentication, FELIX will use a certificate-based
infrastructure and provide a CA (Certificate Authority) entity. Each entity in the FELIX architecture can choose to
trust one or more CAs. When one of these entities needs authenticate a request, the certificate sent by the client
can be verified against the CA's certificate. Only if the client's certificate was signed by a trusted CA, authentica-
tion succeeds.

After establishing, that the client is who it claims to be, the requested operations need to be authorized. In
order to verify privileges of actors, the CA issues credentials. Credentials are signed documents which contain
a mapping from the signing entity to an actor. Associated to this mapping is a set of roles which specify which
operations may be performed by the targeted actor. To enable entities to delegate their privileges to sub-entities
(e.g. to perform actions which are performed by lower layers in the hierarchy), credentials can also be chained.
Usually the CA issues certificates to trusted members/actors, thus building the start of a trust chain. In order to
understand the chaining, let's consider the following example: The CA trusts Actor A, A trusts B and C trusts the
CA. From those trust statements we can infer that C trusts B.

The FELIX project decided to support two different types of users: the administrators and the experimenters.
Each role has a well-defined set of allowed actions and operations. To fulfill the security requirement, the FELIX
RO could provide e.g. different interfaces for the different users and roles, or could adopt a sort of role hierarchy
which allows some operations (e.g. create new resources) for the higher level, the administrator, and others (e.g.
reserve available resources) for the lower level, the experimenter.

Each entity in the FELIX RO is responsible for authenticating and authorizing requests, thus safeguarding
against unauthorized usage. As a third pillar of security, each entity needs to log actions associated with the
performing actor. This accounting ensures that all actions can be retraced and malicious users can charged. Also,
the data can be used to reenact attacks to learn from it and improve the system.

4.2.1.2 Transit Network Resource Manager
The responsibility of the Transit Network Resource Manager (TN RM) is to support the FELIX architecture with
mechanisms to implement network connectivity in particular domains and between them.

In order to deliver the network services in FELIX environment, the TN RM must be integrated with its south-
bound interfaces with a particular network domain. Such a domain can use different L1/L2 technologies, can be
controlled by a Network Management System (NMS) or some specific interfaces or protocols. Since this is up to

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 49

General Architecture and Functional Blocks .

individual case, it is out of the scope of this deliverable and is considered as purely implementation issue. It is in
responsibility of engineers and developers to assure proper integration of TN RM with a domain at the moment
of deployment of FELIX system.

The TN RM must communicate with its RO, in order to receive requests and to notify RO about success or
failure events. Single TN RM must be in relation to single RO only, while at the same time single RO can have
multiple TN RMs under his command. A single TN RM is responsible for particular network resources, which can
be called a network domain, and are commonly managed by single entity, i.e. network administrator or NMS.

TN RM usually manages L1/L2 transport networks (rarely L3) which are build of switching devices using
frames/packets switching or circuit switching technologies. In particular example of FELIX, they will mostly be
Ethernet networks, with assistance of e.g. MPLS protocols. The main difference from SDN RM is that TNRM is
not using the reactive paradigm of Software Defined Networking and controls the resources by configuring e.g.
VLANs or MPLS paths. TN RM is usually assisted here by local NMS, which may be vendor or domain specific
solution.

A single administrative domain managed by an TN RM may be a complex one, which means that it contains
not only transit network resources, but also other types of resources. Those resources will be under a control
of different, coexisting RMs (e.g. SDN or CR), but still under responsibility of the same RO, as depicted on Figure
4.7.

Transit

Metwork
RM

Figure 4.7: multiple RMs in single domain

In the example on Figure 4.7, the same domain has both SDN resources, managed by SDN RM, and transit
network resources, managed by TN RM. This situation is considered to be a common case in FELIX deployment,
and therefore a proper interaction mechanisms between RMs are defined. There are identified several cases of
deployment of TN RM component:

1. in purely transit network environment

2. in mixed environment (e.g. coexistence with SDN resources under independent management); in such
case two options are possible:

(a) TN RM sub-domain has no stitching point with other sub-domains -- in such case interaction is not re-
quired as there are no common elements of the infrastructure and the sub-domain can't use others'
resources

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 50

General Architecture and Functional Blocks .

(b) TN RM-sub-domain has a stitching points with other sub-domains -- a slices may require to use re-
sources from multiple sub-domains, which as a consequence requires additional interaction process
between RMs (either direct or via RO)

The interaction between RMs may be directly implemented as east/west bound interfaces, or be imple-
mented with intermediating RO using existing interfaces. The second options is preferred for implementation,
as it minimizes the amount of implementation efforts required for each RM by eliminating additional specific
interfaces. In general the RO should be responsible to delegate specific requests to proper RMs under his man-
agement, so that each RM has to perform actions only on resources, which are in this RM control. This way e.g.
an TN RM does not need to be aware of SDN resources and vice versa, a SDN RM does not need to know about
transit resources in a domain. The management of stitching points between resources types are the key to proper
execution of the request and realization of the reservations. In domain with multiple RM, it is also possible that
not all RMs are involved in particular reservation, as not all types of resources are used. E.g. if an SDN + transit
network domain is used only for transport L2 traffic, the SDN resources may be not used, while TN RM will be
asked to create a specific edge-to-edge connection through the domain.

The TN RM must have knowledge and ability to communicate with other TN RMs, controlling the adjacent
domains, in order to perform multi domain reservations, as depicted on Figure 4.8.

Transit Transit Transit
Network

Domain A Domain B Domain C

Figure 4.8: inter-domain communication requirement

A connection passing domains A, B, and C requires synchronization of efforts and configuration of resources
in three different domains, while each domain is under control of independent NMS, may use different technol-
ogy and have different policies. In order to implement such circuits all TN RMs must collaborate by exchanging
information about their resources availability and configuration technical details (e.g. common VLAN or LSP iden-
tifier). From the architecture point of view, it is unimportant whether TN RMs exchange messages directly or via a
ROs hierarchical tree, and whether TN RMs can contact any or only directly adjacent TN RM. This particular issues
can be decided during the implementation process. Having a direct communication channels between TN RMs
in different administrative domains may raise several issues, mostly policy and security related. Also RO respon-
sible for different domains may be interested about actions taken by its particular RMs, which were requested by
neighbor domains. Using a ROs as an intermediate point for communications between RMs will give more control
over the interaction process, however this approach may increase the time required for communication. FELIX is
keen to reuse existing software and tools, which may have specific solutions for this case and the implementation
of the system will rely on its mechanisms. E.g. one of the candidates for implementation of TN RM interfaces is
OGF NSI Connection Service protocol, which will require TN RMs to behave as BoD services, which can request
resources from each other (east/west bound interfaces).

The TN RM must have knowledge on its own resources, as well as an overview of all other transit network
domains and its connectivity, in order to enable global inter-domain path finding and prediction of resources
usage. Since TN RM will be mostly used in inter-domain context, a proper mechanisms must be implemented
to share such knowledge between TN RMs in a dynamic manner. The shared information should be abstracted,

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 51

General Architecture and Functional Blocks .fCll)(

so that it not discover domain internals (e.g. private information or key elements related to the security of the
network) and give at least an overview of reachability and interconnectivity information. Such information should
include abstracted interfaces where connection can be terminated, throughput of particular exposed links, and
inter-domain connectivity information. In the simplest cases a single domain can be represented by a cloud
(full mesh topology) with abstracted interfaces providing the links to adjacent domains and/or entities to which
service can be delivered (usually particular interfaces or services on switches or routers within a domain, from
where service can be delivered to particular users, applications or installations). The Figure 4.9 depicts in very
general way an example of such abstraction.

T

Figure 4.9: General example of topology abstraction

Relaying on abstracted topology view a single TN RM will be able to define a route of a particular inter-domain
L1/L2 circuit using path finding functionality. TN RMs are assigned to particular domains, and this information
can be stored either in topology data or in separate lookup service. Therefore having known which domains
will be involved in implementation of a single reservation, an TN RM will known which other TN RMs should be
contacted and how.

The TN RM must be able to collaborate with domains, which are not under FELIX framework management, i.e.
network transport domains. Therefore it is even more important for TN RM to implement standardized interfaces
for inter-domain reservation. An example of such situation is depicted on Figure 4.10.

Figure 4.10: Network reservation through non-FELIX domain.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 52

General Architecture and Functional Blocks

The most left and right domains are under FELIX jurisdiction and includes both SDN RM and TN RM under
control of proper ROs. The user request is forwarded to those RMs via ROs hierarchical tree. The middle domain is
a network transport domain which is not aware of FELIX framework, has no TN RM and RO assigned to it. In order
toimplement a production connection between edge domains, the TN RM in both of them must implement some
standardized interfaces, which will enable them to communicate with the middle domain NMS. Such a candidate
may be for example an OGF NSI CS, previously mentioned. In the particular case depicted on Figure 4.10, the
most left TN RM is responsible for path finding, which includes also non-FELIX resources, and then forward the
request to middle and right domain. One can notice that ROz does not request a transit network service from
its TN RM. This is caused by the fact that in this example it was assumed that a NSl like service was used, where
circuit creation is requested at single point only (at RO, TN RM) and it is responsible for whole inter-domain circuit
creation. The communication is performed directly between TN RMs or adequate instances (NMS of the middle
domain here). Otherwise the circuit could not be created as FELIX is not explicitly controlling the middle domain
and ROs cannot communicate with it to send a request.

In order to manage the reservations, especially in distributed manner, the TN RM must have an internal state
machine for reservations. There are identified tree state machines for reservation (RSM), provision (PSM), and
life time (LSM). The state machines is depicted on Figure 4.11, Figure 4.12, and Figure 4.13.

Reserve
Committi

ng

(O Initial State

@ Transitional States
Reserve

Checking @ stable State

Failed

Reserve

Reserve

Timeout

Aborting

Figure 4.11: TN RM reservation state machine

By the RSM, reservation is made by holding resources between start time and end time of the reservation.
The resources held are made available when the PSM is in Provisioned state, and a data plane connection is
activated. The resources are made available if and only if the PSM is in the Provisioned state AND the start time
< current time < end time.

The PSM is designed to allow resources to be repeatedly provisioned and released in data plane, while being

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 53

General Architecture and Functional Blocks .

() Initial State

@ Transitional States

Provisioni

ng @ stable State

Released

Figure 4.12: TN RM provision state machine

Terminati Terminat
ng ed

Created

@ Initial State

@ Transitional States

@ 5table State

@ Final State

Figure 4.13: TN RM lifecycle state machine

still booked under particular reservation. The PSM transits between the Provisioned and the Released stable
states, through intermediate transition states. An instance of the PSM is created when an initial reservation is
committed, and at that time it starts in the Released state. The PSM transits states are independent of the state of
the RSM. Note that the transition to the Provisioned state is necessary, but on its own is not sufficient to activate
the resources (i.e. made available).

The LSM is used for processing events related to terminate the reservation, i.e. on request from external
entities (like end users).

The FELIX TN RM should cooperate with supervising RO and peering TN RMs and thus obey the FELIX secu-
rity aspects related to an Authentication Authorization Infrastructure (AAl). There must be established a trusted
relationship between particular TN RM and all other communicating components, the communication must be
secured and sender/receiver should be able to be uniquely authenticated. The mechanisms should also support
authorisation mechanism, restricting access to some TN RM functionality basing on implemented policy. The

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

54

General Architecture and Functional Blocks

FELIX framework will provide a dedicated AAl infrastructure which enforce the proper security mechanism to be
used no only by TN RM by also all framework components. FELIX will use a certificate-based infrastructure and
provide a CA (Certificate Authority) entity. TN RM needs to log taken actions and an entity and/or user associated
with them. This very basic form of accounting ensures that all actions can be retraced and malicious users can
charged. Also, the data can be used to reenact attacks to learn from it and improve the system security.

4.2.1.3 SDN Resource Manager

The SDN Resources Manager for the FELIX project will provide it the mechanisms to manage the network ar-
chitecture inside a domain with SDN-enabled hardware (e.g. OpenFlow switches and routers) it is important to
notice that the SDN RM belongs to the FELIX Space.

In SDN RM scope, FELIX does not care about the network physical resources. Simplifying, in an SDN domain,
like an OpenFlow network, the users (experimenters) can control the network behaviour by actively updating the
flow tables of the network elements. This update is usually done by a controller, a software tool that analyses
the incoming traffic to a network resource and decides where to send it according to the user’s will.

The issues start arising when several users want to use the same resources. It is then not obvious how the
related traffic is isolated, so different controllers can only manage only their respective packets. In this architec-
ture, this is achieved by deploying a special purpose controller between the network elements and the users’
controllers. This special purpose controller acts as a proxy deriving each user’s traffic to its own controller. Each
user has his traffic assigned to a flowspace, so it is distinguished from other users’ traffic. This flowspace can be
a range of source or destination IPs or MAC addresses, TCP or UDP ports, etc.. One way to separate the traffic
is assigning a VLAN tag to each packet. In this case, the special purpose controller inspects the incoming packet,
identifies the VLAN tag and sends it to the corresponding user's controller.

The main functions of the SDN RM can be described from the network manager's and the experimenter's
point of view. For the network manager, the SDN RM will provide the managing functionalities for the network
resources. It can define the special purpose controller of the testbed, approve or deny the experimenters’ flows-
pace requests, etc.. For those managing functionalities we see that the SDN RM contains an OpenFlow Resource
Manager (OF RM). For the experimenter, the SDN controller offers an interface to define the creation of slices
of OpenFlow resources. An OF resource slice is formed by a flowspace that isolates the experiment trafficand a
controller that manages that traffic. These functions (isolation and management) are performed by the special
purpose controller (e.g. FlowVisor [3]).

Aside from the main functions described above, the SDN RM fits into the the FELIX AAI (Authentication Au-
thorization Infrastructure). This infrastructure provides the necessary mechanisms to authenticate, authorize
users, as well as provide accountability. In order to offer these functions, FELIX implements a Clearinghouse,
which builds the start of a trust chain. This chain can then be used to verify the identity and privileges of actors.
By using a certificate-based approach, FELIX gathers the flexibility to federate the SDN islands easily. By installing
Clearinghouse certificates actors can be verified against different Clearinghouses. Please see the "FELIX Resource
Orchestrator" chapter for more information.

The next figure depicts the structure. Additionally to the shown entities, the experimenter interfaces with
the AAI system. In order to create namespaces for slices and assign users to them (including privileges), the
experimenter can use a client (a GUI or CLI) to make the calls at the AAI system. This client also handles the
interaction with the SDN RM.

The network manager sets the Special Purpose Controller of the testbed and other administrative/configuration
options. This Special Purpose Controller is connected to the OF devices (e.g. switches) and when a packet arrives
to a switch and there is no entry in the flow table, it is sent to the Special Purpose Controller which, with its slicing
logic, re-sends the packet to the corresponding experiment controller.

Description of the OF RM (OpenFlow Aggregate Manager)

The OF RM allows experimenters to allocate OpenFlow resources based on slicing: it is used for administrating
OF resources associated to slices. The OF RM is used in order to handle (create, analyze, approve, reject, disable,

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 55

General Architecture and Functional Blocks

ﬁ USER SPACE

CONTROLLER 1 CONTROLLER 2 CONTROLLER 3

VLANN

LAN 2
VLAN1

SDN RM

Flowspace
slicing

OF Switch

o

OF Swi wiitch A

Hostl

OF Switch

Figure 4.14: SDN Manager Schema

delete, list) OpenFlow switch slivers, i.e. instantiations of OpenFlow slices.

As an AM, it should be easily extensible: interfaces on the northbound (e.g., administrator) and southbound
(e.g., FlowVisor) interfaces can be added to cover the needs of the testbed administrators (IMs). Essentially, the
OF RM provides support for pluggable administrative and configuration interfaces, used to manage the accounting
and resource allocation for experimental slices running on top of physical OpenFlow network substrates. It should
be fairly lightweight and can run on the same system as the slicing mechanism (i.e. FlowVisor) without additional
hardware requirements. Testbed administrators can also run it on a separate system for isolation purposes, e.g.
so that if they need to reboot the OF RM server, that doesn't affect slicing mechanism. The OF RM should support
some very useful features regarding interfaces with external components such as URL handlers (namespace/call
etc.) and event-handling (slice expiration, event codes, etc.).

As core services, it provides functionalities to setup logging and instantiate northbound APIs and plug-ins,
credential checking and verification, southbound API for creating slices, inspecting slicing mechanisms, chang-
ing the slice FlowSpace, etc. (essentially, the south-bound interface of OF RM, used to communicate with the
slicing mechanism and Virtualization Tool) and a library for slivers, controllers, FlowSpecs, datapaths and miscel-
laneous objects of the OF RM. It also contains modules for handling FlowSpace allocation, user authorization, DB
configuration, exception handling, logging, tracing and JSON encoding and validation.

1. Use AM API to inspect aggregate

2. Determine available datapaths and ports (i.e., available OpenFlow resources)

3. Construct OpenFlow resource request

4. Send RSpec request to AM via AM API, requesting the creation of a sliver with the required resources
5. Wait for admin approval or rejection of the experimenter’s sliver

6. Start experimenting (i.e., utilizing the instantiated sliver)

From the OF RM administrator’s side, the workflow is as follows:

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 56

General Architecture and Functional Blocks

. Configure main administrative credentials (admin password, etc.)

. Trust a AAl system for user authorization, configure slice authority credentials

. Setup the OF RM to talk to slicing mechanism

. Configure local site tags

. Annotate datapaths with appropriate information (location, etc.). Optional

. Setup administrative e-mail notification (e.g., informing about new sliver requests)

. Set sliver auto-approval policies and configure sliver FlowSpace analysis engine(s)

A full sliver’s life-cycle as derived by the OF RM’s functionality inspection is the following (this mainly applies
to slivers which are not approved automatically, but only after an administrator’s intervention):

. User: create sliver passing the resource description

. OF RM: parse incoming resource description and return

. OF RM: send e-mail to admin and user that the resource has been created and its approval is pending
. Admin: approve-resource, notify the associated parties (admin, user)

. Deletion of sliver is carried out by any of these means:

(a) User deletes resource
(b) Admin deletes resource

(c) OF RM: resource expires automatically in case none of the previous steps were taken

Pending, active and even deleted resources can be inspected. Related resource info that can be shown via

the OF RM includes basic resource details, resource descriptions (i.e RSpecs), FlowSpecs and FlowSpaces.
Resources can be shown (listed), approved, disabled, rejected or deleted via the OF RM.

4.2.1.4 Computing Resource Manager
The function of the Computing Resource Manager is to provide a method to assign, setup and configure com-
puting resources inside a FELIX island. It manages physical computing resources, and also the configuration of
slicing mechanisms (e.g. common hypervisors or other virtualization stacks) and computer resources as seen in

User Space (OS images, network interface configuration, etc.)
The Figure 4.15 shows C RM operations for three typical scenarios.

¢ Single hypervisor (left), the C RM instructs the hypervisor to create (or remove, migrate, ...) computing

resources (VMs) when needed. Each computing resource belongs to a specific slice.

e HaaS scenario (middle), the FELIX infrastructure provides hardware-as-a-service. The computing resources

managed on HaaS level are not VMs but entire laaS stacks. Contrary to the figure, there may also be
scenarios where the user completely configures VMs from within the experiment, bypassing the C RM.
Similar for OS images which may be user-provided in this case.

¢ Physical machine (right), an entire physical machine is assigned to a slice.

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No. 608638)
D2.2
31/12/2013

57

General Architecture and Functional Blocks

e —

[
= o O
3 (] ©
2 K 8 8
c =
o
L= T e N
VM VM
---------- ! -
S VM | VM 1 laaS
:

PHY CR

““configure”
““configure”]

manage

Figure 4.15: Computing Resource manager operations

In all scenarios, a disk image repository is available, which is used to distribute OS images to computing
resources (e.g., already containing some typical FELIX user tools, slice resource controllers, etc.)

Management of physical computing resources also provides methods for rebooting machines, remote con-
trol (of a machine's console), or hard power on/off of a machine experiencing problems, for example using a

networked PDU (power distribution unit). Management is typically only performed during problems, or when a
slice is created, destroyed or modified.

Configuration of computing resources
Whereas most of the management matches slice life cycles, the functionality providing configuration and

loading disk images is active anytime a slice computing resource is created or modified. Migration of computing
resources to other islands may also require reconfiguration.
Configuration includes:

¢ setting of unique information in the computing resources, such as IDs, SSH keys, IP and MAC addresses

e setting up monitoring of computing resources

configuring of network interfaces of the computing resource, and setting the underlying resources (e.g.
hypervisor, HaaS platform, physical machine...), such that those interfaces are bridged onto the physical
interfaces that are actually connected to SDN zones in the FELIX island

if necessary, configuring of a slicing mechanism in this bridging, in case multiple computing resources or
slices have to share a single physical interface, typically using a (software-based) SDN solution inside the

virtualization platform. Once the SDN solution has been properly set up, it becomes an SDN resource which
is managed by the SDN Manager.

Configuration may be done by writing to a computing resource's disk images before staring it, or by having
scripts in the computing resource which retrieves configuration data from the C RM. The loading of disk images
itself can be managed by the C RM, or it can be left to the computing resource itself, by providing it with a small
stub OS which retrieves the appropriate disk image from the repository at first boot-up.

4.2.1.5 Monitoring

The purpose of the monitoring framework is to retrieve, aggregate and store the monitoring data of the slices
containing resources from multiple testbeds. The type of resources to be monitored are computing resources,
SDN resources and TN connectivity between different FELIX islands or facilities.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

58

General Architecture and Functional Blocks

We have deeply analysed different kinds of monitoring framework as proposed by other FIRE projects (see
"Related work and testbed analysis" and "Appendix A" for reference). According to Fed4FIRE project, we can
define two different types of monitoring: facility monitoring and infrastructure monitoring.

Facility monitoring includes basic status information about the facility, such as whether server are up and
network connectivity to other testbed (or the Internet) is available. This information is generally available in
testbed and can be published onto the FELIX GUI (or user portal) for the users and/or testbed managers. Also
included in facility monitoring is status information about the functional components of the control and manage-
ment framework. For FELIX, this means that monitoring of the Resource Orchestrators and Resource managers
(and controllers if not already monitored by general facility monitoring) should be implemented and integrated
into the monitoring framework.

Infrastructure monitoring then concerns the actual resources which are available or provisioned in the FELIX
infrastructure:

e Computing resources: available (virtualization) servers, memory usage, CPU load, etc.

¢ SDN resources: available switches, ports, flowspaces (VLAN, MAC addresses ranges, etc.), usage informa-
tion (from device counters)

¢ Transit network resources: available connectivity, endpoints (STPs), bandwidth

The figure below shows the general architecture for the (infrastructure) monitoring framework. The frame-
work consists of monitoring agents (M) and aggregation infrastructure (DB, database).

//’\

Island A Island B

m
\
\
\
\
\
\\
\
\
\

RM

\
\
\
|
Monitor
> T

PHY IT

Figure 4.16: Monitoring architecture

Aggregation

The monitoring of resources creates extra state information inside of the testbeds and FELIX federated in-
frastructure. For some types of resources this monitoring data can match the provisioning information present
in the Resource Managers. For example, VLAN IDs that are requested through the FELIX architecture (using SFA)
should match utilized VLAN IDs as monitored from SDN resources. However, for several reasons there can be a
discrepancy and there is indeed merit in creating additional state through monitoring. For example, there may
a problem with equipment, configuration or the provisioning mechanism that causes inconsistencies between
provisioned (by the RM) and available resources (as per the monitoring framework).

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

59

General Architecture and Functional Blocks

Moreover, there is the possibility that CR, SDN and especially TN infrastructure is shared with additional (fed-
eration) architectures for support of experiment outside of FELIX scope; similarly, some resources may be admin-
istratively reserved by testbed operators. In this case monitoring is required to find out the actual availability of
resources.

Lastly, some monitoring information depends on the real usage of experiments and users. For example,
for computing resources, the RM will now about provisioned VMs, memory etc., but the actual memory load
will depend on the experiments run by the users (and whether VMs are active for the entire duration of the
experiment). For TN resources, connectivity is provisioned with a certain bandwidth, but the actual bandwidth
usage will be variable.

Asthe figure shows, this additional state is kept in databases (DB). To minimize replication of state, aggregating
information into additional higher-level databases should be avoided. However this may be inevitable because:

e aggregating information reduces load on the monitoring framework

¢ since physical infrastructure may be shared with other testbed control frameworks (now or in the future),
the FELIX monitoring framework may not have direct access to monitoring agents and have to rely on
forwarded or aggregated monitoring information (originating from the other control framework)

e aggregating monitoring information provides a single source for FELIX users to retrieve (current or histor-
ical) resource availability.

Where possible, aggregating databases may act as caches only, meaning they can be reconstructed from the
lowest level databases closest to the Resource Managers and monitoring agents. The Fed4FIRE project currently
proposes OML for the aggregation of monitoring information.

Monitoring agents

On the figure three types of monitoring agents are shown:

e agents integrated into the Resource Manager of the corresponding resource (ideal case for FELIX frame-
work)

¢ agents integrated into a controller of the corresponding resource

¢ agents not coupled to RM or controller, but implemented as a stand-alone services (nevertheless reporting
to FELIX databases or RMs).

The monitoring agent may need to be integrated into the controller if the resource requires this. For example,
for SDN OpenFlow resources, monitoring information (e.g. flow counters) are exchange through the OpenFlow
protocol, and an OpenFlow switch connects to only one controller, soitis not possible to bypass the SDN controller
and implement the monitoring agent into the RM.

In some cases (e.g. computing/storage infrastructure), testbed operators may use centralized monitoring
appliances (e.g. Zabbix, ZenOSS) that cannot be easily integrated with FELIX components because of technical
issues or because of being shared with other control frameworks.

In the cases the monitoring agent could not be directly integrated with the Resource Manager, aggregation
should allow integrating the higher-level databases to be integrated/managed in/by a higher level Resource Man-
ager or Orchestrator. Alternatively, a monitoring agent may report directly to a corresponding Resource Manager
so that there is no state outside of a RM.

Slice Based Federation integration

The availability of resources according to the monitoring framework will be exposed through the FELIX Man-
agement and Orchestration Architecture. Both higher-level Resource Orchestrators and users (and gui) can use
this functionality to decide on resource allocation. Aside from implementation of this functionality, appropriate
resource specification languages should be defined for this integration.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 60

General Architecture and Functional Blocks

4.2.1.6 User Access/GUI
The FELIX User Interface is in charge of both exposing and allowing access/management to the different testbeds
resources, such as:

e Computing/storage resources: servers, VMs (hard disk, memory), storage units, etc.
¢ SDN resources: switches, ports, flowspaces (VLAN, MAC ranges...), etc.

¢ Transit Network resources: connectivity, endpoints (STPs), bandwidth, etc.

An Ul offers a friendly way to control the lifecycle of an experiment for different type of users, namely ex-
perimenters and administrators. In the experimenters’ side, they are given the necessary permissions to list the
resources, easily select a subset of those in order to allocate or provisioning them, use and finally freeing those.
Addressing the needs for the administrator, it would be possible to perform tasks such as configuring resources
and policies, activating/deactivating those, monitoring the resources in order to take further action, approve
resources requests from the experimenters, etc.

As for the different expressions that the Ul shall take, this is to be analyzed in order to make available a subset
of those. Each expression provides different benefits, for example a Graphical Ul offered through a web portal can
offer a higher user experience while the command line tool benefits are the automation, as well as the possibility
of allowing mobile access to extend the project scope.

While the User Interface allows access to resources it also communicates directly with the Authentication
and Authorization Infrastructure (AAl) module in order to control who can access those. That is, the Ul is closely
related to the AAI system, which, in a Slice-based architecture stores the following relationships in a registry
(user:permission, permission:resource) and implements the necessary logic in the AAl module to grant or reject
access to a user given its credentials and the resources identifiers to be accessed.

Then, the aforementioned AAI module is the ultimate responsible of granting access to the resources, but
it can be further extended by policies, which are a set of rules defined by the administrators to implement an
upper-level control on the resource usage (e.g. defining a maximum virtual memory value for a VM resource or
a maximum number of flowspaces).

Integrating the Ul with a policies tool is advisable, as it also might be desirable to allow access to some AAIl
information through the GUI.

The prototype for the User Interface would be reflected in the deliverable D3.4 ("End User Tools and API").

4.2.2 Slice Resources Controller

The Slice Resource Controller in the context of the FELIX architecture includes all functionality, APIs and applica-
tions that allow the experiment user to control the slice

¢ from within the experiment (User Space),
¢ needing support from the FELIX framework, provided by some component(s) in the FELIX Space.

For example, consider an experiment that creates dynamic traffic streams across several SDN islands and
transit domains during the runtime of the experiment. The experimenter may set up some traffic generators in
User Space, possibly use a custom controller to configure bandwidth patterns. However, this is contained within
user space, very specific to the experiment and therefore not within scope of a Slice Controller.

Onthe other hand, once this bandwidth is generated, the user may want to request some dynamic bandwidth
across transit domains, or define some SDN routing scheme. For this, a custom (user-provided) controller can be
used, or a generic FELIX provided controller may suffice, but in both cases these actions at some point do require
access to the FELIX infrastructure outside User Space, therefore needing a Slice Controller (or Transit Network

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 61

General Architecture and Functional Blocks

and SDN controllers respectively) which takes the User Space bandwidth requests and passes them on to the
FELIX Space (e.g. NSI and OpenFlow components).

Put more clearly, there are a number of operations that are considered 'control' of some sort from the user
perspective:

¢ Management of resources, using the RO and related components in FELIX Space
¢ Slice control; that is, control of the slice, namely, dynamically adding or removing resources.

¢ 'other' control, for FELIX use cases this is Network Control (e.g., OpenFlow) and Computing Resource Con-
trol (control of VMs, physical nodes, etc.)

e control implemented through user tools

Out of scope as far as the architectural discussion is concerned, are user tools as well as Network and CR
Control. User tools are implemented by the experimenter; Network and CR Control use existing solutions such as
OpenFlow. FELIX Space however does have provisions (were necessary) to configure the slicing mechanisms prop-
erly for these types of control to function. In view of the use cases, FELIX may create or propose some standard
implementations for these type of control functions for the respective use cases, however these implementation
build onto the FELIX architecture but are not part of it.

The scope of the Slice Resource Controller is the slice control. Control over the slice offers the ability to the
user to use well-defined APIs to add/remove resources (e.g. for virtual machines), request additional access to
the network (e.g. flowspaces), change connectivity or bandwidth reservations (e.g. over the transit network),
etc. It may also be used to reconfigure part of the slice, without a changed in reserved resource: for example, a
tool such as VeRTIGO can provide a means to offer logical topology changes to the user slice; another example
is 'virtually' cutting/repairing network connectivity to simulate network failure scenarios (such as the disaster
recovery use case).

Types of Slice Controllers

Different functionalities offered by FELIX to the slice are exposed through different types of slice controllers.

e CR controller: for virtualized computing resources, the hypervisor and its APl toward the guest kernel (in-
side the slice) provides fairly transparent access to computing resources outside the slice (e.g. disk access,
CPU, physical network ports). The hypervisor (i.e., the controller) will support nested virtualization for
use case that requires this. For testbeds providing physical computing resources, there may be dedicated
control; for example, the Emulab virtual wall at iMinds provides node control from the tevc (Testbed Event
Client) to control and signal nodes.

e Transit Network controller: allows setting up (or tearing down) dynamic bandwidth using the transit net-
work infrastructure outside the slice. This controller may be implemented mostly as functionality offered
by the FELIX control framework. In any case, an important aspect is also the connection and stitching of
transit network and SDN zones, testbeds and/or domains (e.g., VLAN translation).

¢ SDN controller: allows controlling a slice of SDN resources (flowspace), and use SDN techniques to route
and/or switch slice traffic over the physical FELIX infrastructure, over SDN-enabled switches and to/from
transit networks. The SDN controller consists of the controller provided by the experimenter, and the part
of the FELIX SDN Resources Manager which interfaces with the experimenter's controller, i.e., provide a
known protocol such as OpenFlow, and adapt the slice SDN actions to the FELIX SDN resources to support
slicing, for example flowspace filtering, translation, logical topology support etc.

Types of control APIs
Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2

Date of Issue: 31/12/2013 62

General Architecture and Functional Blocks .

FELIXSPACE

Slice Resource
Controller

Figure 4.17: Slice control and APIs in the FELIX architecture

In most cases, the slice controller will be implemented as two entities: one inside the User Space, and one
residing entirely in the FELIX SPACE, outside of direct control of the user. Between the two entities, there is a
control API.

As shown on Figure 4.17, the management architecture in FELIX Space is used to provide the slice for the
user experiment. The Slice Resource Controller in run inside User Space, which is supported by the resources of
the slice. API end-points are visible from the slice (and User Space). As there is conceptually overlap between
control and management function (for example, both control and management can be used to add resources
to the slice), in many case the control functions in FELIX Space will be part of respective Resource Managers or
Orchestrators. In these cases the APIs are attached to these RO/RM. In some cases the type of resource control
is may not be a function of an RO/RM, and a separate controller needs to be provided in FELIX Space. In other
cases still, some legacy control may be involved which falls outside of FELIX Space. Then the API can either talk
directly to components outside FELIX Space, or the communication can be proxied through an RM or other FELIX
component.

Mapping of Slice Controllers and Resources (Resource Controllers)

Through the use of APlIs, slice controllers are mapped to FELIX infrastructure resources and resource con-
trollers. This mapping can be one-to-one, one-to-many and many-to-one on different abstraction levels. An
example is shown on Figure 4.18, separating User Space from the rest of FELIX architecture via APIs, for two
slices over two SDN islands connected through a transit domain.

Because of the slicing mechanism, multiple slices are supported on top of a single computing resource (VM
server), SDN resource (switch) or NSI resource (links and switches). Therefore at the very least, many slice con-

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 63

General Architecture and Functional Blocks .

IslandA! Transit !lslandB

| |

SLICE1 SLICE 2 , Neweork

| |

T T | |
User VM rUse:rVI'\d YUserVM | I
NSl SDN SDN ! !

Controller Controller Controller ! ! w
: OF controller OF controller : : &)
| | %
T - | | s
T T VAL 1 1 w

ControHe Cofitroller],| Controller |/ | 1 "3

"', ! Hypervisor ! |
I I
5 [T
p— p—— m
— =—— 7
=
—
B wl
OF switch ™

Figure 4.18: Examples of mapping between slice controller and resources (resource controllers)

trollers are mapped to the same resource controller in the FELIX control framework; for example, multiple VMs
on a single VM server, multiple OpenFlow controllers on a single FlowVisor or other OpenFlow slicing device.

From the viewpoint of a single slice, there can be one-to-one mapping, for example, because of slice isolation,
VMs, flowspaces, etc. from other slices are not visible, so a VM's kernel can be fixed to one hypervisor of a single
VM server.

Within a slice, a controller can control multiple resources. An experimenter's SDN controller can control
multiple switches, possibly even in multiple SDN zones or islands. A Transit Network Controller will -in the FELIX
use cases- request connectivity in multiple NSI domains. Using the CR controller, a VM may be migrated to a
different VM server (different hypervisor), possibly to VM server in a different island.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 64

General Architecture and Functional Blocks

5 Conclusions and Summary

The FELIX project creates a FELIX Federated Framework which allows users to request, monitor and manage a
slice in a distributed, heterogeneous, multi-domain environment.

The first step to achieve this aim is define system requirements for such specific environment which allows
to create a virtual infrastructure or a distributed multi-domain slice. Project defined a 5 crucial issues to provide
such distributed slice:

1. AAA -- Applying proper security and control mechanism for users in federated environment;

2. Resource management — Coordination of various resources provided by multiple domain heterogeneous
resource management systems is required;

3. Resource allocation planning — It is important to create a suitable resource allocation plan of both com-
puting resources and network resources, which can reflect reservation options for user and resource ad-
ministrator issues, such as cost, energy consumption and load balancing, into consideration;

4. Provisioning — It is important to provide applications with a virtual flat environment, just like a dedicated
cluster, using dynamic resource information, such as IP addresses;

5. Monitoring — It is difficult for each user to monitor the usage of distributed and heterogeneous "virtual"
resources managed by multiple domains.

The FELIX project has analysed how these issues are resolved in existing project. FELIX has concentrated on
4 European Projects (OFELIA, FIBRE, Fed4FIRE, BonFIRE) and 2 Japanese Projects (GridARS, RISE) focused on the
following architectural components:

e General control frameworks;

¢ Resource discovery, reservation and provisioning mechanisms;
e Experiment managers;

¢ |dentity management tools;

e User interface tools.

The analyse involves also the evaluation of all those aspects in the context of FELIX project. The general
conclusion was that FELIX project objective is to aim at large scale federations with merging different resources
types at the same time. In comparison, the analysed infrastructures were limited in range or technology, disre-
garding e.g. long distant network connectivity and dynamic provisioning, where FELIX found his place giving an
opportunity to merge and enhance the offered services.

After analyzing existing architectures proposed by the previously mentioned projects FELIX created its own
architecture, which is the combination of two spaces (refer to Figure 5.1 and Figure 5.2):

e the FELIX Space (Figure 5.1) —responsible for providing the resources for creating a user slice. It relies on
Resource Orchestrators (ROs), Resource Managers (RMs), and the physical infrastructure (test-bed).

The Resource Orchestrators (ROs) is one of the architectural components that is responsible for the orches-
tration of end-to-end, multi-domain service in the FELIX infrastructure. The Resource Managers (RMs) is the next
architectural components that is responsible for charge of controlling a specific type of resources. The architec-
ture defines several types of RMs: Computing Resource Manager, Transit Network Resource Manager and SDN
Resource Manager. The next architectural component —the Monitoring Framework —is responsible for collecting

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 65

General Architecture and Functional Blocks .

SDN Island A SDN Island Z

FELIX SPACE
30vdsS XI13d

Slice Resource Controller |j

Slice Resource Controller SLICE 1

Figure 5.1: key concepts of FELIX Space and components

and managing monitoring data from slices and experiments using these slices. In the ideal case, the monitoring
agents and monitoring databases are closely coupled with the RO/RM hierarchy, as shown on the right of the
figure (for island Z). The last architectural component — the Slice Controller function — is responsible for man-
aging the creation, modification and deletion of slices. It is implemented as a Slice Resource Controller in User
Space, and a set of functions of the RO/RMs. Slice Control is initiated from outside FELIX Space, and a set of APIs
is provided to allow this (left part, island A).

e the User Space (Figure 5.2) —consists of any tools and applications which allow to control a slice or execute
particular operation on slice by user.

r SDN Island A

SDN Island Z ‘

Transit Network
y = domains —————
m SDN Control | TN Control |) ' c
ge SLICE 1 &
% A
o ERETLIL SDN Control %
T} SLICE 2 3 >
2] 2 (3)
: F A m
(oo |
CR
Figure 5.2: key concepts of User Space and components
Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2

Date of Issue: 31/12/2013 66

General Architecture and Functional Blocks

User Space is supported by the set of virtual resources of the corresponding slice. From the perspective
of user Space, the slice consists of a number of IT, transit and SDN resources. These are controlled using Slice
Resource Controllers that communicate with FELIX Space through the control APIs described above. The archi-
tecture of control inside User Space depends on the specific use case. Slice Resource Control may be spread out
over multiple components, and similar types of resources may be controlled from more than one controller (e.g.
one SDN resource controller per island, as is the case for slice 1 in the figure).

The FELIX architecture proposed in this document is generic, in the sense it left more specific decisions to be
taken during an implementation process. It defines however the main components, its responsibility and depen-
dency, which enables readers to understand the concept of how FELIX will operate. It is crucial to understand
that the proposed solution is scalable, and this can be understand in two contexts. It is scalable, in the sense
that a built infrastructure can be easily extended with new sites, by simply deploying new ROs and RMs under
existing hierarchy. It is also scalable in the sense that the management layer and its RMs are not limited to han-
dle only specific types of technologies or protocols. Despite FELIX proposed three main RM type (CR, TN, and
SDN), nothing prevents developers to add new functional block to that, while the interactions and dependencies
is already there. In this way FELIX concept can be extended to cover new emerging and future trends in IT, like
e.g. Network Function Virtualization [7].

The architecture puts an emphasis on dynamic provisioning and automated components collaborations,
which enforces RMs to be autonomic in decision making process, yet enabled for communication and opera-
tion in wider, more complex environment. The aspect of federation is extremely important for FELIX, as it will
integrate Fl experimental facilities on different continents and provide solutions to real existing problems, as de-
fined in Use Cases of D2.1 deliverable [20]. Therefore the automation, independence, and security of all FELIX
entities are treated with care and considered in details. The adoption of FELIX architecture at the top of existing
Fl experimental facility should not be considered as rebuilding the whole existing management layer, but instead
as an adding new functionality to enhance offered services, and to expand its range and features.

The proposed FELIX architecture is an input for further implementation efforts, which will prototype and val-
idate specific implementation of the FELIX framework. As mentioned before, the FELIX architecture definition
is generic, thus the result of the project will be just one way of realising it in practice. It is envisaged that FELIX
project will use NSI CS standard for performing TNRM functionality and SFA for CR management, which are imple-
mentation decisions. This document and its statements are the final conclusion of the design and architecture
definition efforts of FELIX, however the document and its content may be updated as new ideas or issues will
arise during implementation phase of the project.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 67

General Architecture and Functional Blocks

References

[1] Bonfire project, http://www.bonfire-project.eu/.

[2] Fibre project, http://www.fibre-ict.eu/.

[3] FlowVisor, https://github.com/OPENNETWORKINGLAB/flowvisor/wiki.

[4] GENI API, http://groups.geni.net/geni/wiki/GeniApi.

[5] GENI, https://github.com/fp7-ofelia/AMsoil/wiki/GENI.

[6] ITIL, http://www.itil-officialsite.com/.

[7] Network function virtualization, http://www.etsi.org/technologies-clusters/technologies/nfv.
[8] NSI Connection Service v2.0, http://redmine.ogf.org/dmsf_files/12970?download=.

[9] RSpecs, http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs.

[10] SFA2, http://groups.geni.net/geni/attachment/wiki/SliceFedArch/SFA2.0.pdf?format=raw.
[11] www.opennetworking.org/sdn-resources/sdn-definition.

[12] Fibre deliverable, d4.3: Report on the contributions to the federation framework, http://www.fibre-
ict.eu/images/stories/deliverables/d4.3%20%20report%200n%20the%20contributions%20t0%20the%20federation%:

2013.

[13] Fibre deliverable, d5.1: Report on the detailed design and development of tech-
nology pilots, http://www.fibre-ict.eu/images/stories/deliverables/2013_05_24 _fibre-
d5%20.1%20report%200n%20detailed%20design%20and%20development%200f%20technology%20pilots.pdf,
2013.

[14] S. Bradner. Key words for use in rfcs to indicate requirement levels. IETF RFC 2119, 1997.

[15] Chowdhury, NM Mosharaf Kabir, and Raouf Boutaba. Network virtualization: state of the art and research
challenges. Communications Magazine, IEEE 47.7 (2009): 20-26, 2009.

[16] A. Farrel, J.-P. Vasseur, and J. Ash. A path computation element (pce)-based architecture. IETF RFC 4655,
2006.

[17] E. Haleplidis and et al. SDN Layers and Architecture Terminology. Internet Draft IETF, December 2013.
draft-haleplidis-sdnrg-layer-terminology (work in progress).

[18] Konstantinos Kavoussanakis, Alastair Hume, Josep Martrat, Carmelo Ragusa, Michael Gienger, Konrad Cam-
powsky, Gregory Van Seghbroeck, Constantino Vazquez, Celia Velayos, Frédéric Gittler, Philip Inglesant,
Giuseppe Carella, Vegard Engen, Michal Giertych, Giada Landi, and David Margery. Bonfire: the clouds and
services testbed. 5th IEEE International Conference on Cloud Computing Technology and Science, Cloudcom,
2013.

[19] D.G. Perez, J.A.L. del Castilla, Y. Al-Hazmi, J. Martrat, K. Kavoussanakis, A.C. Hume, C.V. Lopez, G. Landi,
T. Wauters, M. Gienger, and D. Margery. Cloud and network facilities federation in bonfire. In The first
international FedICI'2013 workshop: Federative and interoperable cloud infrastructures. Euro-Par, Aachen,
Germany, 2013.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 68

General Architecture and Functional Blocks

[20] R.Krzywania, W.Bogacki, B.Belter, K.Pentikousis, T. Rothe, G.Carrozzo, N.Ciulli, C.Bermudo, T.Kudoh,
ATakefusa, J.Tanaka, and B.Puype. FELIX Deliverableand D2.1: Experiment Use Cases and Requirements.

[21] Atsuko Takefusa, Hidemoto Nakada, Tomohiro Kudoh, Yoshio Tanaka, and Satoshi Sekiguchi. Gridars: An
advance reservation-based grid co-allocation framework for distributed computing and network resources.
In Job Scheduling Strategies for Parallel Processing, volume 4942/2008: 152-168, April 2008.

[22] T.Kudohand, G.Robertsand, and [.Monga. Network Services Interface: An Interface for Requesting Dynamic
Inter-datacenter Networks. OFC2013, March 2013.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 69

General Architecture and Functional Blocks

Appendix A

In this appendix, we discuss further details for each testbed outlined in the previous chapter: "Related Work and
Testbed Analysis". In particular, we give a brief overview of each testbed and provide additional implementation
details previously omitted for brevity. These details focus on the infrastructure and platform developed in the
course of each project, and are described below:

OFELIA

OFELIA (OpenFlow in Europe -- Linking Infrastructure and Applications) is a pan-european testbed, consisting of
the following facilities:

e Berlin, Germany (TUB) — partial replacement of existing campus network with OF-switches
¢ Ghent, Belgium (iMinds) — central hub, large-scale emulation

e Zurich, Switzerland (ETH) — L2 (NEC) switches mesh, connection to Onelab and GENI

e Barcelona, Spain (i2CAT) — L2 (NEC) switches and optical equipment (ROADM ring)

e Bristol, UK (UNIVBRIS) — national hub for UK optical community; optical (ADVA, Calient), L2 (NEC, Extreme)
switches, FPGA testbed

e Catania, Italy (CNIT) — based on NetFPGA and OpenSwitch technologies, with focus on ICN (Infomation
Centric Networking)

e Rome, Italy (CNIT) — based on NetFPGA and OpenSwitch technologies, with focus on ICN -- under deploy-
ment

e Trento, Italy (CREATE-NET) — a city-wide distributed island based on L2 (NEC) switches and NetFPGA; opt-in
users via heterogeneous access technologies

e Pisa, Italy (CNIT, 2 locations) -- based on NetFPGA and OpenSwitch technologies, with focus on Cloud Data
Center management -- under deployment

e Uberlandia, Brazil (UFU) -- under deployment

Based on OpenFlow 1.0, OFELIA offers a private test environment for the development and testing of new net-
work applications using novel topologies. It integrates OpenFlow-enabled hardware devices of various vendors
(e.g. NEC, ADVA) and sets of virtual machines for traffic generation.

OFELIA’s facilities are interconnected to a single network distributed across Europe. The connectivity between
the islands is based on Gbit/s Ethernet tunnels.

OFELIA Control Framework

The OFELIA Control Framework (OCF) is a set of software tools for testbed management. It controls the experi-
mentation life cycle; including reservation, instantiation, removal, configuration and monitoring.

The control framework hides the complexities involved in single and federated island setups, yet still pro-
viding enough information so that experimenters can program their environment using heterogeneous, scalable
resources. It enables allocating resources and running experiments in the entire OFELIA facility.

OCF features the full software stack: front-end, clearinghouse and resource managers (AMs). It also provides
support for management of OpenFlow, Virtual Machine (currently Xen-based) and Emulab resources.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 70

.
General Architecture and Functional Blocks .fell)(

The testbed control framework front-end is a tool called Expedient. The island managers will use it to con-
figure and assign resources to projects as well as manage user data and credentials; while the experimenters will
use it to configure, start and stop their experimental slices as well as updating their own user, project and slice
data.

Expedient communicates with every Aggregate Manager in order to perform the resource provisioning. OCF
provides a base class for the AMs: AMsoil, a pluggable system that determines a structure and provides the
necessary modules for handling incoming communication and easing the resource management.

The core idea behind OFELIA Control framework (OCF) architecture is to provide a federated experimental
facility capable of provisioning isolated virtual experimental infrastructure on OFELIA campus islands. OCF is char-
acterised by its modularity ands abstracted implementation. These features enable an incremental development
whilst retaining consistency.

It fulfils important functional goals, such as:

¢ Maintaing autonomy of islands

¢ Unique experiments identified by independent, isolated slices

¢ Individual island policy management

¢ Opt-in resources for experiments

¢ Federation between other projects (e.g. Import & export resources from other facilities)

¢ Instantiation of a generalized virtual topology completely decoupled from the physical islands, based on
switches, links and virtual machines

OFELIA Architecture

User Interface
Plug-ins

Experiment
M Control &

Clearing house Management
Layer (ECML)
(Expedient++)

(0 User interface
@ Management
Interface

s Slice interface Slice Control &

Management

Layer (SCML)
Aggregate
Managers hierarchy

Figure A.1: Individual Island Architecture

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

71

General Architecture and Functional Blocks

Any individual island within the OFELIA facility will use the same control and management architecture to
provide experimental services. The experimental, control and management architecture of a single OFELIA island
can be divided three layers. The three layers (starting from the top) are:

¢ Experiment Control and Management layer (ECML): the uppermost layer beneath the user interface. The
component at this layer is the clearing house (slice manager and repository), which will contain information
about projects, slices, and user information (repository/database)

e Slice Control and Management layer (SCML): contains the various aggregate managers which aggregates
different resources to give a unified view to the upper layer. The components residing at this layer will
enforce policies on the components in the lower layer. In this layer, aggregate managers can be separate
entities or can be an aggregate of aggregate managers forming a hierarchy of aggregate managers

¢ Resource Management layer: manages the resources in the OFELIA facility. Irrespective of the virtualiza-
tion techniques used for different resources, the objective of RML is to provide an experiment with the
illusion that it is running on its own dedicated infrastructure. Two resource managers are identified:

— the RM for OpenFlow-enabled equipment (using FlowVisor)

— the RM for virtual machines (using XenServer hypervisor technology)

Components across these layers (e.g. hierarchy of aggregate managers) may differ based on the individual
offering to the OFELIA facility.

Federation Mechanism

OFELIA control framework was based on SFA, a federation framework which defines a set of rules by which two
or more experimental entities can be federated. The OFELIA facility exists as a federation of heterogeneous
experimental facilities with a homogeneous control framework. This is called intra-federation.

Intra-federation

It follows the same architecture as the single island architecture, and is visualized in Figure A.2. The common
problems in an intra-federation experiment are related to identity, authority management and also the con-
trol procedures which are inherently handled by the OFELIA control framework. All the available resources are
accessible through the control framework. The Ul is an entity which talks to the clearinghouses. The clearing-
house/Slice manager is responsible for communicating with all the aggregate managers through its southbound
interface to collect all information regarding the available resources and present it to the Ul layer.

Inter-federation

It is defined as the federation of heterogeneous experimental facilities with heterogeneous control frameworks.
In order to support federation with other testbeds OFELIA identifies following requirements that the control

framework should fulfil:

¢ Unified profile for certificate authority management
¢ Control frameworks that support common interfaces or adapters

e Common data access interfaces

When satisfying inter-federation in OFELIA control framework, the resources will be made available to a dif-
ferent control framework through its association with the aggregated aggregate managers. Aggregate AMs collect
all information from the lower level AMs to present the available resources to the other federation. Interior and

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 72

General Architecture and Functional Blocks .fell)(

"Experiment Control & Management Layer (ECML)

GUI

Plug-ins

Slice Control & Management I.ryer (SCMmL)

5 =a

|
==Y =D

OFELIA island OFELIA island

Figure A.2: Architecture for intra-federation

exterior gateway managers perform the function of importing and exporting resources from other testbeds as
described in the following figure:

In order to support federation with other testbeds OFELIA control framework architecture supports a plug-
gable environment to add new interfaces. The plugin system has SFA plug-in support to interface with existing
SFA based testbeds. It is also modular enough to create new plug-ins as needed.

FIBRE

All the information in this section is taken from [2], [12] and [13], to which refer for further details.

The FIBRE (Future Internet testbeds and experimentation between BRazil and Europe) project aims to de-
sign, implement and validate a shared Future Internet research facility, supporting the joint experimentation of
European and Brazilian researchers. This overall main goal can be broken down into the following objectives:

¢ Build a shared-scale experimental facility.
¢ Federate the Brazilian and European facilities.
¢ Showcase the potential of the infrastructure.

¢ Enhance the collaboration and exchange of knowledge between European and Brazilian researchers in the
field of Future Internet.

The FIBRE testbed is a federation of several data-centers distributed across Europe and Brazil managed by
different kind of control and monitoring framework (OFELIA, OMF and ProtoGENI). This federation joins three
testbeds:

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 73

General Architecture and Functional Blocks .fCll)(

Experiment Control & Management Layer (ECML)

GUI l
Plug-ins ‘

Slice Control & Management l.rlyer SCML)

Resource Management Layer (RML)

=Y =

OFELIA island Non-OFELIA island

MAC RM PR

Figure A.3: Architecture for inter-federation

¢ Ofelia testbed, based on OpenFlow technology.
¢ NITOS testbed, wireless nodes based on commercial Wifi cards and Linux open source drivers.
¢ FIBRE-BR testbed, including nine Brazilian partners interconnected using private L2 channels.

The Figure A.4 shows the overall scenario of FIBRE testbed.

FIBRE Architecture

The FIBRE architecture (or Federation Environment) is the result of an analysis and internal project decisions
related to federation issues on the number of authorities, the naming, the user portals and the federation of the
control plane.

Authorities. FIBRE testbed is designed to have two top-domain authorities, the first under the responsibility
of Brazil and the latter under Europe responsibility. These two authorities will be inter-connected in order to
achieve a federation implying that a SFA Register has to be deployed in each side and each authority has to sign
the certificate issued by the other authority.

The Figure A.5 shows the peering of EU-BR authorities for FIBRE federation.

User Portal. FIBRE testbed is designed to have at least one portal per top-authority. The chosen software
component is MySlice tool.

The Figure A.6 shows the integration of MySlice component into FIBRE architecture.

Federation Control Plane. The MySlice portal will interact with NITOS (based on OMF) and OFELIA CMFs
through its SFA-GW (SFA gateway) component, which includes the responsibility of the slice management. The
SFA-GW directly interacts with OFELIA Aggregate Managers which already support the GENI version 3 APIs. On

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 74

General Architecture and Functional Blocks .fell)(

UNIEACS UFPA UFPE U. Bristol

(=) =

UFSCar E

B/ /.

UFG _, o] e ﬁpup_us
GEANT
PoP-i2CAT Pup_m%

v
() @)
= owr

i2CAT

P°P PA PoP-PE

‘ PoP-GO . RNP
ﬁ@ o

RNP ()
o] o

UFRJ

f PoP-BA

(((')

UTH
. OFELIA Control Framework

B owr

I ProtoGENI

B WDMGMPLS
(((.))) Wireless experimental facility
((-)) Small wireless facility (3 nodes)

Figure A.4: FIBRE testbed

European _ Brazilian
Authority — Authority

<>
SFA
Registry

_
SFA
Registry

SFA' AM

Ofelia

Figure A.5: FIBRE top-authorities

the other hands, the SFA-GW will need an SFA Wrapper (or SFA Driver) to communicate to OMF which still does
not support SFA APIs in the version 5.4. It is important to note that OMF 6.0 will natively support SFA through
the omf_sfa component.

The Figure A.7 shows the interaction of MySlice portal with the CMFs.

Synchronization of LDAP and SFA Registry. The synchronization between LDAP and SFA Registry is a cru-
cial point for FIBRE testbed allowing the reuse of the LDAP user management, already deployed in OFELIA and
Brazilian testbed.

FIBRE Use-Cases

The FIBRE project has identified three scenarios to evaluate the deployed local and federated facilities.
Seamless mobility for educational laptops.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

75

General Architecture and Functional Blocks .fell)(

MysSlice MySlice
Portal Portal
SFA GW SFA GW
i Authorit
Registry Authority y Registry

SFA AM
Ofelia

Figure A.6: Fibre federation portal
o

Registry Authority MySlice Public Internet

______________ SFA GV | —

Private network (VPN)

GUI+CH

Plugin sys
VT OF

OWN API SFA OWN API SFA

VT AM OPTIN AM NITOS SFA Wrapp

Figure A.7: FIBRE federation control plane

The goal of this use-case is to analyze and utilize the capabilities of wireless networks to augment the seamless
handoffs experience on networks formed by mobile users, i.e. people using smart phones, tablets, netbooks, and
notebooks. This tech-pilot aims to join the common OpenFlow enabler and WiFi access point providing spatial
coverage for experimental wireless communication, laptops and/or programmable handheld devices with WiFi
and Bluetooth (BT) interfaces, plus instrumentation for traffic generation and analysis and mobility emulation.

High definition content delivery across different sites.

The idea behind this use-case is that an OpenFlow based application (i.e. a NOX application) can be interfaced
to one or more Content Delivery Servers (CDSs) that form a Content Delivery Network (CDN). This application
could monitor the CDS performance by retrieving the related status, load and failures. When certain thresholds
are exceeded (e.g. the load on CDS or its energy consumption), NOX application can re-route one or more clients
to another CDS located in another site. The re-routing can be performed and facilitated by NOX application which
can easily change the flow tables of the OF switches under its control.

Bandwidth on demand through OpenFlow GMPLS in the FIBRE facility.

This use-case aims to analyze the flexibility of the OpenFlow protocol and NOX control platform in a close
collaboration with a GMPLS PCE (Path Compute Element) module to implement an open and generalized Band-

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 76

General Architecture and Functional Blocks .fell)(

width on Demand (BoD) service on virtualized networks. The Figure A.8 shows the overall architecture with the
design modules and their interfaces:

Use-Case #3: overall Architecture

BR EU

OSCARS OSCARS

RESTful HTTP API RESTful HTTP API

Extended Floodligth or NOX

Enhanced NOX Controller
Controller

OF-based API OF-based API

Physical
connection

Figure A.8: Fibre UseCase 3 overall architecture

Several building blocks are deployed to fulfil the requirements:

¢ Flowvisor, used to virtualize the physical network topology.

e Ofelia Control Framework, used to manage each island's resources (Openflow switches and Virtual ma-
chines).

e NOX controller, used to retrieve the network information and to create/destroy the flow-entries into the
OpenFlow enabled switches.

¢ Flow-Aware PCE, used to calculate a path between source and destination end-points.

e OSCARS, used to perform the BoD requests and to share topology details between different islands.

The Figure A.9 depicts the physical interconnection between a Brazilian partner (CpQD) and an European
partner (i2CAT) through a VPN Layer 2 circuit.

Fed4FIRE

In order to achieve the desired architecture for resource discovery, requirement, reservation and provisioning,
the following components must be deployed within a federation facility:

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

77

General Architecture and Functional Blocks

Infrastructures & Islands description

(PgD island

OSCARS (VM)

|
Core Manager

V101202546633

—— Contral intra]
The experiment _
Experiment (intra)
application runs in CPeD
—— Control {inter, VLAN X}
It allocates YLAN-hased
cireuits inan OF topalogy.

VLAN 889

Infrastructures & Islands description
i2CAT island

Boxin2CAT

D Bowin (Pgd

Cortrolintra)

Experiment (intrz)

—

Control inter, YLAN X

Box ini2CAT

D Box in CPgD

OCF (3ggs. 10120100

\

FlowVisor

/ OCF (ages)

AT
VPN Client

(Exper)
VM2

N

¢ (PqD

(ESCA - RedIRIS,
GEANT-- RedClars,
ANSP - RNP - GIGA

{Exper)
Wi FlowVisor

VAN 7

o || o || o o || o ;
swith1 | | switch2 [| switch3 switch4 | [switch5 | | switch 6

L

(PgD
VPN Server

Real topology | | Real tonology

Figure A.9: Fibre UseCase 3 Physical Interconnection between Brazil ans Europe

Portal: A central starting place for (new) experimenters. Totally new experimenters can register on the por-
tal. The portal will also provide a view on the available resources in the federation, supporting resource
discovery, requirements definition, reservation and provision operations. Note that, besides, other ex-
perimenter standalone tools can provide the same functionality but novel experimenters will be able to
access through a single site.

Identity provider: Experimenters identify themselves at the portal as federation experimenters are regis-
tered at this identity provider. As can be seen in the figure, testbeds can also deploy their own identity
provider (testbed A). However, if testbeds do not want to go through the burden of setting up their own
identity provider, they have to outsource this functionality to the identity provider of the Federation Fa-
cilitator.

Atestbed directory: A directory readable by humans and by computers that has an overview of all testbeds
in the federation. Inits computer readable form, the testbed directory is merely a listing of the IP addresses
corresponding with the different testbed management software deployments that expose the common in-
terface for discovery, reservation and provisioning. In its human readable form, this directory is a webpage
that displays some introductory information about each testbed belonging to the federation.

A tool directory: It gives an overview of available tools for the experimenter. This will again be a web-
page were more information regarding FIRE tools is gathered. This can cover both tools that are officially
endorsed by some of the testbeds, and other tools that are brought to light by experimenters or the tool
developers. Users will gain access to the human readable testbed directory through the portal.

Certificate directory: In our distributed architecture, the targeted chain of trust implies that testbeds
should import the root certificates of the different identity providers present in the federation into their

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No. 608638)
D2.2
31/12/2013

78

General Architecture and Functional Blocks

own access control components. This way the testbeds can verify that an incoming user is indeed affili-
ated with a federation member. These root certificates could just be manually exchanged between the
different testbed operators. However, it is more convenient to provide a trusted location that makes all
the federation root certificates available in a single download. This is the goal of the certificate directory.

Future reservation broker: A tool to facilitate future reservations of resources, this broker can help to find
and subsequently reserve the right time slots and resources over multiple testbeds. A single query to this
broker will provide the information for all testbeds.

A Fed4FIRE testbed has the following attributes:

A testbed may be or may not be an identity provider.

For authentication/authorization between users and testbeds, a trust model is used. Identity providers
trust each other and specific experimenter properties are included in the experimenter’s certificate, which
is signed by the identity provider. Testbeds can therefore do rule-based authorization. This means that
incoming users cannot only be distinguished based on the affiliation, but also on the experimenter’s profile.
Forinstance, because of this approach, a testbed is able to define and enforce the policy that experimenters
coming in from the federation should at least have reached the Ph.D. student level. This means that on this
particular testbed, master students will not be granted access, even if they are affiliated with a member
of the federation.

Atestbed can query/trust the central certificate directory to see which root certificates it should trust. This
is more convenient than manually retrieving all certificates from the different identity providers within the
federation.

The existing component(s) responsible for discovery, reservation and provisioning should expose this func-

tionality through a common interface. SFA is considered to be a suitable choice for such a common interface.
However, when adopting SFA for the envisaged heterogeneous federation, three important additions are needed:

e The GENI RSpecs are not tightly specified, which means that the same type of resources (e.g. virtual ma-

chines) are defined in multiple ways. Itis the goal to further explore the use of ontology based descriptions
for these RSpecs in the context of the Fed4FIRE project. This should make it easier for experimenters, ex-
perimenter tool and broker developers to use these resources.

Policy based authentication is considered to be very important. Credentials, certificates and policy engines
should be extended as such.

There is no concept of future reservation in the AM API at this moment. This extension will be studied
further.

Monitoring and Measurement

The following types of monitoring and measurement are identified in Figure A.10:

¢ Facility monitoring: This provides monitoring information used in the first level support to see if the testbed

facilities are still up and running. The most straight forward way for this, is that there is a common dis-
tributed tool which monitors each facility (Zabbix, Nagios or similar tools). Another possibility is to expose
the information already registered by currently deployed monitoring tools. In both cases, the interface on
top of this facility monitoring should be the same. It needs further specifications.

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No. 608638)
D2.2
31/12/2013

79

General Architecture and Functional Blocks

¢ Infrastructure monitoring: This provides monitoring information about the infrastructure resources that
is useful for experimenters. For instance, providing measurement data about resources such as switch
traffic, wireless spectrum or physical host performance if the experimenter uses virtual machines. This
should be provided by the testbed provider (an experimenter has for instance no access to the physical

host if he uses virtual machines), and as such, a common interface is needed but is not existing today .

¢ Experiment measuring: Measurements which are done by a framework that the experimenter uses and
which can be deployed by the experimenter itself on his testbed resources in his experiment. As illustrated
in Error: Reference source not found for instance, one can see two experiment measuring frameworks
each with its own interfaces (and thus experimenter tools). Of course, a testbed provider can ease this by

providing e.g. OS images with certain frameworks pre-installed.

Get monitor data
HTTP

Get monitor data
HTTP

HTTP cach
Futurereservation “ -
@ broker
| - 250
Central facility monltorln'
| (first level support) Tool directory

| s
’
l 4 pr A~ P
L o o8 o
P Tes’hed 1| cCertificate’ o | Identity
B dir?tory directory provider

S

|dentity
provider

Discovgry, reservation,
_sbrovisioning J

- : oF
Discovery, reservation, =
provisioning

! 1
|]
| [}
1
|
Lo
/ i
-
|
I
|1
Ly
]
'
1
1
1

4 a

e / 2ok |
Rules-based ,/ Rules-based (’i 1
R4 authorization H

authorization s s :
monitoring |

|

|

|

EE . & @
Facility Facility

Testbed B monitoring

I

1

1

I

1
ol

Federation facilitator

Testbed A monitoring

Figure A.10: Monitoring and measurement architecture

Experiment control
For experiment control, the testbeds or central locations should not run specific components, as the experimenter

can fully roll this out on his own. So from an architectural point of view, no specific components need to be
introduced to support experiment control. However the testbed providers could ease this by putting certain
frameworks pre-installed in certain available disk images. Ideally, these frameworks are based on a standard
resource control protocol, since this will permit to control resources provided by federated facilities using different
management software in a uniform way. An example of such a protocol is the federated resource control protocol

(FRCP) .
Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 80

General Architecture and Functional Blocks

BonFIRE

All the information in this section is taken from [1], [18] and [19], to which refer for further details.

The BonFIRE (Building service testbeds for Future Internet Research and Experimentation) project goal is to
provide a state-of-the-art multi-site cloud facility for applications, services and systems research in the Internet
of Services (loS) community. This facility can give researchers access to large-scale virtualized compute, storage
and networking resources with the necessary control and monitoring services for detailed experimentation of
their systems and applications.

BonFIRE comprises 7 geographically distributed testbeds across Europe, which offer heterogeneous cloud
resources, including compute, storage and networking. The Figure A.11 shows further details about resources
offering on the different testbeds.

Scenario 2

Figure A.11: Geographically distributed testbeds

Resource control.

BonFIRE offers the complete control of compute, storage and networking resources. It supports dynamically
creating, updating, reading and deleting resources throughout the lifetime of an experiment. Compute resources
can be automatically configured with application-specific contextualization information.

The BonFIRE framework can offer “on-request” compute resources, allowing experimenters to reserve large
quantities of physical hardware (162 nodes/1800 cores available) and giving experimenters flexibility to perform
large-scale experimentation.

Managed experiment environment.

BonFIRE gives the fully control of the running experiments. An experiment can define the entire infrastruc-
ture across all testbeds in a single file descriptor and can perform further complex actions on the newly created
infrastructure. E.g.:

e Saving compute disk images with owner software stack or storage resources.
¢ Sharing saved compute and storage resources.
¢ Sharing access to experiments with colleagues.

e Repeating experiments and share experiment descriptions for others to set up.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 81

General Architecture and Functional Blocks

e Aggregated monitoring metrics at both resource level (e.g., CPU usage, packet delay, etc.) and application
level.

e Aggregated monitoring metrics at infrastructure level at selected testbeds.

Ease of use.
BonFIRE gives a deep control of resources to configure, execute and manage the experiment trying to make
this actions as easy as possible. It offers several tools to interact with BonFIRE API, e.g.:

BonFIRE Portal GUI, where it is possible to create an experiment in a step-by-step manner

CLI (command line tool), such as Restfully

A script file descriptor (JSON or OVF based format), which can be automatically executed by Restfully

Raw HTTP commands via cURL

What can be tested and how.

BonFIRE supports experiments exploring the interactions between novel service and network infrastructures.
Three initial scenarios have been defined to highlight the general classes of experiment that can be supported by
the facility. These scenarios include:

e Extended cloud scenario: a federated facility with heterogeneous virtualized resources and best-effort In-
ternet interconnectivity.

e Cloud with emulated network implications: experimental network emulation platform under full control
of the experimenter

e Extended cloud with complex physical network implications: experimental cloud system federated with
GEANT BoD and FEDERICA (collaboration with NOVI)

BonFIRE site facility | Connecting NREN
EPCC JANET

HLRS DFN

HPLabs JANET

IBBT BelNET

INRIA RENATER

PSNC PIONIER

Table A.1: BonFIRE sites and correlated testbeds

BonFIRE Architecture

The BonFIRE architecture is composed by several layers (Portal, Experiment Management, Resource Manage-
ment, Enactor and Testbed site layer) and a set of cross-cutting capabilities for monitoring and identity manage-
ment. Each layer exposes functionalities via a set of well-defined APIs.

The Figure A.12 shows a high-level overview of the BonFIRE architecture.

¢ The Portal. The Portal offers the experimenters a graphical user interface showing the running experi-
ments, the available resources at each testbed site, the monitoring information, etc...

¢ The Experiment Manager. The Experiment Manager provides an interface to schedule, plan and orches-
trate the execution of an experiment as described by a file descriptor (with all resources for an initial

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 82

General Architecture and Functional Blocks

o ~Identity
r — o | Server

| E:wig.m“ 1 | l
OICOICOEIICD),

. i —
‘ ResourceManager Ly, Message
- Sl weee | Queue

Figure A.12: BonFIRE Architecture

deployment).

¢ The Resource Manager. The Resource Manager provides an interface to create, manage and terminate
compute, storage and network resources, which may physically reside at any testbed in the BonFIRE sys-
tem.

¢ The Enactor. The Enactor allows the decoupling of the specific implementations of the testbed API from
the BonFIRE Resource Manager providing a well-defined and “standardized” interface (like a driver or a
general plugin).

¢ The Testbed Sites. The BonFIRE cloud testbed sites use a common OCCI interface to expose resources
(compute, storage and network) to the Enactor. Compute resources refers to virtual machines created for
experiment, network resources connect these VMs and storage resources are disk-blocks attached to VMs.

Cloud-to-Network Interface

BonFIRE provides the experimenters with the possibility to request QoS-enabled network connectivity services
with a guaranteed bandwidth to interconnect BonFIRE sites (Bandwidth on Demand services). Instead of relying
on the best-effort Internet connectivity, the cloud resources located in different BonFIRE sites can be intercon-
nected through a dedicated network service with the bandwidth requested by the experimenter in terms of
minimum bandwidth reserved and maximum bandwidth guarantee.

The inter-site BoD services are provided by a third-party network provider connecting the BonFIRE sites. In
particular, BonFIRE adopts the GEANT Bandwidth-on-Demand system (AutoBAHN), which is a mature solution in
terms of specifications, implementation and deployment in a multi-domain environment.

The Figure A.13 depicts two of BonFIRE sites (EPCC and PSNC) connected to the European GEANT network.

In order to integrate the AutoBAHN services, BonFIRE architecture was enhanced with a new module (Auto-
BAHN Adaptor) and a new resource type (Site-Link). The AutoBAHN Adaptor's main functionality is to translate
BonFIRE OCCI to BoD service requests, basically SOAP requests towards the AutoBAHN User Access Point (UAP)

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 83

General Architecture and Functional Blocks

PSMC
BonFIRE

PIONIER =

<

Figure A.13: BonFIRE Cloud-to-Network interface

interface. The Site-Link resource is a new type of OCCl resource (like storage or network resource), which can
be manipulated following the common CRUD mechanisms adopted in BonFIRE to create, remove and query re-
sources via OCCl interfaces. The site-link resource is described by several network parameters, i.e. endpoints

(each BonFIRE site connected to GEANT), vian identifier, bandwidth constraint, etc..
The Figure A.14 shows the enhancement to BonFIRE architecture with AutoBAHN services.

Monitoring
dashboard

(Used by Portal,
Experiment
Manager, Broker
and Testbeds)

Experiment Manager

()
[puy

as new type of OCCI
resource

Message
Queue

Cloud-to-network adapto

Enactor

smnmsmnEmn : ny w ; @‘(ScheduIing)‘Gcmuming)‘GesewatioD'
Testhed
Cloud-to-net IF
(Net side)

Controlled

(Monitoring VM VM

Aggregator)

Figure A.14: Enhancement to BonFIRE architecture with Cloud-to-Net extensions

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

84

General Architecture and Functional Blocks

GridARS

The GridARS (Grid Advanced Resource Management System) framework is a reference implementation of the
Open Grid Forum (OGF) Network Services Interfaces (NSI), Connection Service (CS) protocol standard, developed
by AIST. The CS protocol version 2 is a Web services-based interface to reserve, provision, release and terminate
a service, such as a end-to-end connection, via a two-phase commit protocol. GridARS can coordinate multiple
resources (services), such as a network connection, virtual machines and storage spaces, via the CS protocol.

User / Application

Global Resource
Coordinator (GRC)

CRM CRM

NRM

i
ALV Y
N =
X
<

1
W

Domain A Domain B

Figure A.15: GridARS resource management configuration.

Figure A.15 shows a resource management configuration assumed by GridARS. In Figure A.15, Domain A
and B denote network domains managed by different administrative organizations. This resource management
configuration consists of a Global Resource Coordinator (GRC), which coordinates heterogeneous resources, and
Resource Managers (RMs), which manage each local resource directly. GRCs and RMs can work together to
provide users a virtual infrastructure over multiple domain physical resources. NRM, CRM and SRM in Figure A.15
denote RMs for networks, computers and storage, respectively. More than one GRC is allowed in a single system.
GRCs could be configured in a coordinated hierarchical manner, or in parallel, where several GRCs compete for
resources with each other on behalf of their requesters, such as users and applications.

GridARS Architecture

Figure A.16 illustrates GridARS architecture. In order to provide requesters with a virtual infrastructure, which
spans several cloud resources, provided by multiple management domains including commercial sectors, GridARS
provides three service components:

e Resource Management Service (RMS)
¢ Distributed Monitoring Service (DMS)

e Resource Discovery Service (RDS)

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 85

General Architecture and Functional Blocks

.. User/Application/GRC i
« | (TTEEEEEEEEEETS rmEEmEEEEEmm—— 1
& | { Applications | cu GUI | i Applications } | CLIJ [GUI
O
qg; RMS Java Client API DMS Java Client API
o
NSI CS ver. 2 Stub DMS Stub
I WS-1 compliant SOAP messaging I
NSI CS ver. 2 Skelton DMS Skelton
RMS WS Wrapper Module DMS WS Wrapper Module
5]
3 DMS/C
o GRC NRM CRM SRM (Collector)
W W Wrapper | Qpac/a 00 |Eemmmmmeee—ee =
[a W rapper rapper rapper DMS/A 7 = \I
I b . | (Aggregator) | Existing 1
Planner I AR-based Existing Resource E i Monitoring i
i Management Systems) i Systems J
\ J | J
| |
Resource Management modules Monitoring modules

Figure A.16: GridARS service components.

Resource Management Service (RMS) is based on NSI CS and consists of GRCs and RMs. Co-working with GRCs
and RMs, RMS enables to coordinate heterogeneous virtual resources on multiple cloud environment. Here, a
virtual resource means a part of physical resources, sliced and isolated by other users or applications. For exam-
ple, a network resource is an end-to-end bandwidth guaranteed connection and its detailed physical topology
does not need to be disclosed. GRC has a co-allocation planning capability, called Planner. Planner determines
a suitable resource allocation plan. Based on the allocation plans, GRC can perform resource reservation on
subordinate GRCs or RMs.

Distributed Monitoring Service (DMS) allows to the requesters to monitor the virtual environment, allocated
to them. DMS does not have a central database, such as MonALISA and PerfSONAR, and each virtual resource
usage is monitored, managed and filtered by each cloud administrator. DMS gathers such distributed monitoring
information, tracking the hierarchical RMS reservation tree using the reservation ID, automatically. DMS consists
of Aggregators (DMS/A) and Collectors (DMS/C). DMS/A gathers monitoring information from related DMS/As or
DMS/Cs distributed over multiple domains, and provides the information to the requester. Each DMS/C monitors
the reserved resources periodically, filters the monitoring information by the domain policy, and provides the
requester with the authorized information. Based on the monitoring information, the requesters can recompose
the virtual infrastructure for their applications.

Resource Discovery Service (RDS) collects static resource information items from each resource domain, and
provides the aggregated information. The RDS implementation is based on Catalog Service Web (CSW), defined
by Open Geospatial Consortium (OGC), which is an online XML-based database. Each resource domain can POST
an XML document, which describes its static resource information, such as network topology, number of VMs,
and storage spaces.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

86

General Architecture and Functional Blocks .fCl X

RISE

Since 2009, JGN-X have been working on developing a nation-wide OpenFlow testbed "RISE(Research Infrastruc-
ture for large-Scale network Experiments)". RISE project is successfully running an OpenFlow testbed over JGN-X,
with fully utilizing its wide-area coverage from US West coast to Southeast Asia. RISE provides the wide-area OF
network composed by the hardware OpenFlow switches, also provides the RISE OF Controller based on Trema
which developed by NEC. Also researchers and developers can try their own OF controller on the RISE network for
their experiment. And some SDN or Cloud developers can try their own software examination with the dynamic
network provisioned by the RISE controller. Currently, RISE has 11 sites in Japan, and three sites in overseas. For
each site, RISE has a few OpenFlow switches and two VM servers (Japan domestic only). Currently, there is no
any control framework and portal. It means FELIX control framework will be great contribution to them.

f sendai

StarBED

To Los Angels
OKyO

ana
"

Okayama

Fukuoka -

Nagoya

Osaka

\ @

\] To Bangkok, Singapore
\ Okinawa

N
\

Figure A.17: Global RISE testbed infrastructure

Previous RISE Architecture

RISE is constructed over the JGN-X network, thus links between OpenFlow switches are implemented by tradi-
tional VLAN technology. In order to create the network slices, RISE divided one physical OpenFlow switch into 16
VSls (Virtual Switch Instance). This virtualization mechanism is not provided by OpenFlow standard, but Open-
Flow switch specific function. Therefore, 16 users can share single physical OpenFlow switch at maximum. In
addition, VM servers are installed on each site and VMs are attached to the experimental user’s slices.

For the link between OpenFlow switches, it's implemented by traditional VLAN technology. Therefore, it was
difficult to isolate "RISE user slice" and another user's slice created by only VLAN. So they decided to use Pseudo
Wire technology for data-plane between OF switches in each site. However, they had the issue on the topology.
They have ten sites in Japan and three sites in overseas (Los Angeles, Bangkok, Singapore) but its topology is not

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 87

General Architecture and Functional Blocks .

S _— — - N OpenFlow Controller

Virtual Switch Instance

Sharing physical port with VLAI

Physical Switch

Figure A.18: RISE Architecture

full mesh. As the result, users concentrate sites which can create the loop topology, then fully-utilized the testbed
environment. In order to resolve this issue, they develop the new architecture called RISE3.0.

Current RISE Architecture

In this RISE 3.0 design, RISE team employs logical path system because it is easy to implement. This method
replaces ethernet switch which locates between user OpenFlow switch and JGN- X switch, with OpenFlow switch.
It called this OpenFlow switch "RISE OFS" (Figure A.19: RISE Logical path). In RISE 3.0, they provide logical
neighbor link for user OpenFlow switches combining physical neighbour links. In Figure A.19, user OpenFlow
switches Ua, Ub, Uc connect RISE OFSes Ra, Rb, Rc respectively. We assign ports to logical paths for each users.
Ra, Rb, Rc connect JGN-X switches Ja, Jb, Jc respectively, and JGN-X switches forward packet whose VLAN is
already configured, with Pseudo Wire . In this example, VLAN ID "L" is assigned to link between Ja and Jb, "M" is
assigned to link between Jb and Jc. And logical path "R" is configured between Ua and Uc. Path "R" consists of
multiple physical links "L" and "M". Logical path is defined by user identifier and edge ports of RISE OFS.

Implementation of Logical Path
For implementation of RISE logical path, there are following two methods.

¢ 1) VLAN stacking

This method uses VLAN ID as logical path identifier. For each logical path, it assigns VLAN ID (hereafter, logical
path ID), then RISE OFS fowards packets with the logical path ID. Hereafter, we express Pac as logical path ID. The
packet from Ua to path "R" is added logical path identifier "R" at Ra. Then, to forward neighbour JGN-X ethernet
switch Jb, Ra adds VLAN ID "L" according to physical link Lab which consists of logical path "R". In other words,
controller adds flow entry to add VLAN IDs "R", "L" in order, and to forward to Ja from OpenFlow switch Ua port
for path "R". In Rb, it trims top VLAN ID "L", then it observes "R". Rb recognizes that it is on the way of "R", thus
adds new neighbor link ID "M" to foward next JGN-X ethernet switch Jc. Finally, Jc receives the packet, sends to
Rc, Rc removes VLAN ID "M", "R", and forwards Uc. As explains above, we can implement logical path stacking
VLAN IDs which specify logical path and neighbour link. RISE OFS is able to decide the destination of receiving
packet according to VLAN IDs.

e 2) Address rewriting

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

88

General Architecture and Functional Blocks .

User OFS Q Logical path ——

RISEOFS S

6., &

RISE OFS
Path P = {user U,, port ao, physical link L, port bo}
Path Q = {user Uy, port by, physical link M, port co}
JGN-X switch

Path R = {user U, port a1, physical link L & M, port c1}

User OFS -IE

RISE OFS . R L|s| o]
Lo Rt s]o]

Figure A.20: Implementation by VLAN stack

This method rewrites MAC address of packet to foward along the logical path. In this method, RISE OFS identifies
logical path with MAC address instead of VLAN ID. As same as Figure A.19, user OpenFlow switches (except for
Ub), RISE OFS, JGN-X ethernet switches are connected. Let logical path be defined by port a0 of Ra and port c1
of Rc. In Figure A.21, Ra and Rc are edge OFSes, Rb is core OFS. When Ra receives packet from Ua to path, it
recognizes that the packet belongs to logical path "R" from user identifier U and input port a0. Then, Ra rewrites
VLAN ID to "L" to forward the packet to Jb. Finally, it rewrites source and destination MAC addresses to s',d’
respectively, and sends to Ja. This methods differs from 1) that it does not stack VLAN ID, but rewrites MAC
addresses to gurantee uniquness of packet on the logical path. For example, if Ra receives packet whose source
and destination addresses are s,d from Ua, it send RISE 3.0 controller Packet-In message. The controller identifies

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013

89

General Architecture and Functional Blocks .

user identifier U and input port a0 from the Packet-In message. The controller can calculate edge OFS Rc and port
c1 of the path according to U and a0. Then, it sends flow entries to Ra, Rb, Rc along the path. On Ra, Rc (edge
OFS) rewrite VLAN ID and MAC addresses, and on Rb just rewrites VLAN ID ("L"-=> "M").

sten e =]

Figure A.21: Implementation by rewriting MAC addresses

RISE 3.0 controller will employ address rewriting method which described in 2). Because of implementation
limita- tion of RISE OFS. Because there is a limitation of RISE OFS product specification. In fact, when push two
VLAN-IDs to OFS simultaneously, the performance degrades. And also, VLAN stacking is not allowed on JGN-X
switches, because of operation policy.

RISE Use-Cases

Dynamic path provisioning over inter-domain SDN testbed. This use case is aiming to interconnect SDN testbeds in
3 continents and provision the layer2 path dynamically. IDCP was used for the interconnection between domains.
To make a provision the path in RISE, we embedded RISE OF controller into OESS, developed by GlobalNOC and
deployed in Internet2. We performed dynamic path provisioning demo between RISE SDN testbed in Japan and
US Internet2 AL2S in 2013.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D2.2
Date of Issue: 31/12/2013 90

General Architecture and Functional Blocks

SDN connection demo from RISE Japan to the 12 AL2S US "..oocion

tanaka@ote.kddi.com

(to NetherLight in the near future) sencises

RISE
rise.dcr?n-x.ip
RISE
OSCARS 0.6
/

/

RISE Controllér
based OE

I

\
JGN-X DCN
OSCARS 0.5.4

{ maniLan
; , =
f @)
Internet2 AL2S
INTERNET al2s.net.internet2.edu
@ OSCARS 0.6 --- » To control Juniper MPLS router = 12 AL2s
" ‘OSCARS 0.6
. Q a NOX based Q ~
‘(,. 1 OESS » To control Brocade OFS K
----- RISE Controller R
based OESS ==~ » To control NEC OFS
NOX based
OESS
_______________________ /
- == BT bkl i p—
- S -~ T~a /
- - 1 S~< ’
¥ 1 TP3
kote-mx80-1 OSCARS 0.6
kote-mx80-2 R ’
T;:r(l:s " RION
kote-mx80-3 - - Y L ‘ OSCARS 0.6
JGN-X DCN

den.jgn-x.jp

P3 DCN Internet2 ION

INTERNET
transpac3.iu.edu ion.internet2.edu

(TransPAC

Figure A.22: SDN connection demo

The scientific/academic work is financed from financial resources for science in the years 2013 - 2016 granted for the realization of the international project
co-financed by Polish Ministry of Science and Higher Education.

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No. 608638)
D2.2
31/12/2013

91

user
Tekst maszynowy
The scientific/academic work is financed from financial resources for science in the years 2013 - 2016 granted for the realization of the international project
co-financed by Polish Ministry of Science and Higher Education.

	Abstract
	Executive Summary
	Introduction
	System Requirements
	Related Work and Testbed Analysis
	Survey of European and Japanese testbed architectures
	OFELIA
	FIBRE
	Fed4FIRE
	BonFIRE
	GridARS
	RISE

	FELIX Considerations
	Summary

	System Architecture
	Concepts and Definitions
	FELIX physical network infrastructure concepts
	Slice-based Federation (SF) concepts
	FELIX architecture definitions

	Architectural Building Blocks
	Management and Orchestration Architecture
	Slice Resources Controller

	Conclusions and Summary
	References
	Appendix A

