FEDERATED TEST-BEDS FOR LARGE-SCALE INFRASTRUCTURE EXPERIMENTS

FELIX EU-JP

Collaborative joint research project co-funded by the European Commission (EU)and National Institute of

Grant agreement no:

Project acronym:
Project full title:
Project start date:
Project duration:

Information and Communications Technology (NICT) (Japan)

608638

FELIX

"Federated Test-beds for Large-scale Infrastructure eXperiments"
01/04/13

36 months

Deliverable D4.1
FELIX Components Validation Report

Version 1.0

Due date:

Submission date:

Deliverable leader:

Author list:

31/08/2015
01/09/2015
i2CAT

Carlos Bermudo (i2CAT), Carolina Fernandez (i2CAT), Bartosz Belter (PSNC),
Krzysztof Dombek (PSNC), Artur Juszczyk (PSNC), Kostas Pentikousis (EICT),
Umar Toseef (EICT), Gino Carrozzo (NXW), Roberto Monno (NXW), Atsuko Take-
fusa (AIST), Jason Haga (AIST), Tomohiro Kudoh (AIST), Takatoshi Ikeda (KDDI),
Jin Tanaka (KDDI), Brecht Vermeulen (iMinds), Vicent Borja Torres (iMinds)

Dissemination level

Ooood

PU: Public

PP: Restricted to other programme participants (including the Commission Services)

RE: Restricted to a group specified by the consortium (including the Commission Services)
CO: Confidential, only for members of the consortium (including the Commission Services)

FELIX Components Validation Report

<THIS PAGE IS INTENTIONALLY LEFT BLANK>

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015

Table of Contents
Abstract

Excecutive Summary

1 Introduction

2 Abbreviations and Definitions
2.1 Abbreviations e e
2.2 Definiions e e e e e e e e

3 Deployment of Components
3.1 Resource Orchestrator e e e e e e e
3.2 SDNRM . . . o e e e
3.3 CRM . o e e e e e
3.4 SERM . o o e e e e e
3.5 TNRM . L o e e e e e e
3.6 Monitoring System e e e e e e e e
3.7 PublicMonitoring e e e e e e e
3.8 AAA L e e e

4 Testing of Functionalities per Component
4.1 Resource Orchestrator i e e e e e e e e
4.1.1 Featuresvalidated e
4.1.2 Validation procedures e e e e e e e e e
4.2 Software-Defined Networking Resource Manager o o v i i v v i ..
4.2.1 Featuresvalidated e
4.2.2 Validation procedures e e e e e e e e e
4.3 Computing Resource Manager o o i i i e e e e e e e e e e e e e
4.3.1 Featuresvalidated e
4.3.2 Validation procedures e e e e e e
4.4 Stitching Entity Resource Manager 0 i i e e e e e e
441 Featuresvalidated e e
4.4.2 Validation procedures L e e e e e
4.5 Transit Network Resource Manager o i i i i i e e e e e e e e
451 Featuresvalidated e
4,5.2 Validation procedures e e e e e e e
4.6 Monitoring System L L e e e e e e e e e e
4.6.1 Featuresvalidated e e
4.6.2 Validation procedures L e e e e e e e e e
4.7 PublicMonitoring e e e e e e
4.7.1 Featuresvalidated e

4.8 AAA . L e

5 Validation Tools
5.1 OMNI . . o e e e e e e e e e e e e

10
10
11

12
12
12
14
14
15
15
16
16

18
18
18
22
23
23
24
26
26
27
29
29
30
31
32
32
33
34
36
37
37
38
38
39
42

45

FELIX Components Validation Report

5.2 R . o o e e e e
5.3 Public Monitoring

5.4 Jenkins

5.5 SonarQube

6 Conclusions and Summary

References

Appendix A: Software Stack Deployment per Island
A.1 PSNC domain
A.2 i2CAT domain
A.3 iMinds domain
A.4 EICT domain
A.5 KDDI domain
A.6 AIST domain

A.6.1 Island no. 1
A.6.2 Island no. 2

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No. 608638)
D4.1
01/09/2015

List of Figures

Figure 3.1
Figure 4.1
Figure 4.2
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5

Deployment of components in FELIXislands 13
Public Monitoring e e 38
Hardware monitoring e e e e e 39
Jenkins main page with listoftasks, 46
Jenkins page for validation of RO code, using Pylint 46
Jenkins page of an early deployment and unittestonRO 47
SonarQube Main Page e e e e e 48
SonarQube page with analysisonthe ROsource 49

List of Tables

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table A.1
Table A.2
Table A.3
Table A.4
Table A.5
Table A.6
Table A.7

Ingress parameters and the outputvalues 20
MS APl endpoints with an indication of the arguments accepted and the return values . . 35
Public Monitoring web service URl e 37
Methods of Common Federation APlversion2 40
Methods for slice/project memberservice 40
Software modules installed in PSNCdomain 53
Software modules installed in i2CAT domain 54
Software modules installed in iMinds domain 55
Software modules installed in EICT domain 56
Software modules installed in KDDIdomain 57
Software modules installed in AlSTislandno. 1. 58
Software modules installed in AlSTislandno. 2. 59

FELIX Components Validation Report

Abstract

This report documents the procedures used to validate and test the internal workflows, on the one hand, and
interactions between the FELIX components, on the other. The document attempts to effectively demonstrates
that the implementation exhibits the expected behaviour as a whole. The document also sums up the steps
carried out to deploy the FELIX framework software modules across the federated FELIX islands. Finally, this

document describes the status of the current deployments and indicates some of the missing steps that are to
be addressed during the final year.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015

FELIX Components Validation Report

Excecutive Summary

Deliverable D4.1 details the deployment procedures, functional testing and validation, and the evaluation of the
validation for each of the FELIX components.

Validation is not an isolated step from the development process; it is rather performed throughout the de-
velopment and deployment phases of each module providing feedback to solve and improve them in a cyclic
way.

The document is structured in three main parts: the deployment of the components, the testing of func-
tionalities and the validation tools. After a brief introduction and a list of acronyms and short definitions of the
concepts used in the document, the deployment of components section provides details on where each compo-
nent has been installed. After that, the Testing of functionalities section describes per component which features
are validated and how. Finally, the Validation Tools section provides a list of the different tools used to validate
the components (OMNI, Jenkins with SonarQube, etc.). As these tools have been presented and described in pre-
vious deliverables, this document will briefly describe them but focus on how we used them to perform different
kind of validations on the software modules.

This document is addressed to software architects, software engineers and software developers implement-
ing specific features of FELIX to know how to validate future development or improvements.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 8

FELIX Components Validation Report

1 Introduction

In software product development, the process of validating the software product is aimed at ensuring that the
design requirements initially defined in the architecture specifications are met and properly implemented by
the product. The validation process usually takes place at the end of developments, once verification has been
completed. Whilst the verification process (generally consisting in functional testing) ensures that the software
module has been developed to comply with the initial design requirements and specifications, the validation
stage checks that the software module actually meets the needs defined by such design requirements. The veri-
fication and validation processes allow to identify unexpected component errors or faults, and in this case, result
in feedback to the development team to fix a specific issue.
In FELIX, the validation and verification processes have been carried out by two different groups:

¢ Developers of each software module run the functional testing or verification, both during development
and after the end of the developing stage

¢ Integrators (island owners) execute the software validation, mostly related to deploying FELIX components
in the target islands and implementing use cases.

The work distribution described above responds to needs to perform different types of test in different stages
of maturity of the software modules.

During and after the development stage, FELIX developers teams have performed automatic and/or manual
tests on their software module to verify proper internal functioning, as well as interaction with external modules.
Once a software module is extended with new functionalities, further tests are carried out to prepare and ease
future integration with a subset of modules. Such modules are specific for every type of FELIX software module.
When the integration stage starts, the integration team takes over the testing role and shall thus provide further
feedback to the developers team, in case any issue was encountered on the software module.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 9

FELIX Components Validation Report

2 Abbreviations and Definitions

Throughout this document we use specific notation and acronyms that are explained here. Please refer to this

guide to identify the concept or for a more detailed explanation.

2.1

Abbreviations

AAA: Authentication, Authorisation and Accountability.
CLI: Command Line Interface.

CRL: Certificate Revocation List.

CRM: Computing Resource Manager.

FAF-FLS: Fed4FIRE's First Level Support Monitoring.
GENI: Global Environment for Network Innovations.
GUI: Graphical User Interface.

MMS: Master Monitoring System.

MRO: Master Resource Orchestrator.

MS: Monitoring System.

OFVER: OFELIA VERsioning system.

PE: Policy Engine.

pyPElib: python Policy Engine library.

RM: Resource Manager.

RO: Resource Orchestrator.

RSpec: Resource Specification.

SDNRM: Software Defined Network Resource Manager.
SERM!: Stitching entity Resource Manager.

STP: Service Termination Point.

TNRM: Transit Network Resource Manager

URN: Uniform Resource Name.

VM: Virtual Machine.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015

10

FELIX Components Validation Report

2.2 Definitions

e Agent: Refers to the virtualisation server. This is the software running in each virtualisation server and
acting as the entry point to the hypervisor that allows to manage the virtual machines of the users.

¢ cURL: Library and command-line tool for transferring data using various protocols.

¢ FlowSpace: Set of rules to define operations on packets. Contains a variable number of datapath IDs and
their selected ports, a filtering condition to match the packets (usually a VLAN or a range of them). This
conforms an internal data model of the FlowVisor that is later on inserted on the switches.

e GENI: Provides a virtual laboratory for networking and distributed systems research and education, as well
as fostering standardisation and making the SFA interfaces advance.

¢ Island: Physical domain under particular management. It provides infrastructure and resources to the end
user.

¢ OFVER: Versioning system that consists of a number of core scripts to manage the install and update pro-
cesses, and allows extension through custom scripts.

e OMNI: CLI tool which is part of the GENI Control Framework.

¢ perfSONAR: a network measurement toolkit that provides, among others, a uniform interface to schedule
measurements and retrieve data from the network devices.

¢ pyPElib: Policy Engine library developed in Python. It aims to help programmers using the abstractions
provided to apply rule-based policy enforcement.

¢ Pylint: Python source code analyser which looks for programming errors, helps enforcing a coding standard
and sniffs for some improper programming practices.

e RM: Software component able to reserve, create, manage and delete resources by communicating with
the hardware. It provides interfaces for both administrative and common operations on resources.

¢ RSpec: XML document following agreed schemas to represent resources that are understood by Resource
and Aggregate Managers.

¢ URN: Public identifiers given to resources in the network in order to uniquely identify and exhaustively
describe the properties of the resource. For that, the urn scheme is followed.

e Zabbix: Production-grade software to perform real-time monitoring of metrics collected from servers,
virtual machines and network devices.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1

Date of Issue: 01/09/2015 11

FELIX Components Validation Report

3 Deployment of Components

The deployment of the FELIX stack has followed, at first, a sequential planning of different modules within an
island in order to validate the behaviour of the modules and to generate and improve the deployment instruc-
tions required to simplify installation and configuration in other domains. Thereafter, FELIX SW modules started
being deployed in the multiple domains, where it took place an iterative refinement of the configurations and
integration steps for the different modules. With most modules deployed, the basic communication workflows
between them were set in place and validated.

Figure 3.1 depicts the location of each domain containing FELIX software modules, on top of a world a map.
Below, a table is shown containing the status of deployment and validation of the user's GENIv3 north-bound
APIs to reach every module.

A brief explanation of the deployment steps for the different modules is provided below, aimed at integrat-
ing the live representation of islands composition and software status maintained live on the project website
(http://www.ict-felix.eu/?page_id=332). Appendix A provides a number of tables consisting on a de-
tailed summary of the deployment status and information of each component per island or domain. This infor-
mation is shared among the FELIX domains in order to properly configure the Resource Orchestrators and Master
Resource Orchestrators within the federated testbeds.

3.1 Resource Orchestrator

The Resource Orchestrator (RO) is at the heart of the FELIX virtual infrastructure configuration, coordinating
user's actions for resource instantiation (computing, OpenFlow-enabled switches, stitching entities and transit
networks) with C-BAS and monitoring. RO can run in two operation modes: RO (default) and Master RO (MRO),
thus acting as parent orchestrator and coordinator of other ROs.

Each island (but iMinds, where FOAM is reused from Fed4FIRE) has deployed its own RO, which is responsi-
ble for orchestrating local resources made available for the federation. As per the design of the FELIX architec-
ture, two MROs are deployed in FELIX: one in i2CAT (European region) and one in AIST (Japanese region). MROs
communicate with each other to implement inter-continental infrastructure provisioning. Further details on the
location of such modules are provided in Appendix A.

The source code for RO is available in the GitHub public repository, under the resource-orchestrator branch.
A number of configuration files are provided so that the administrator fills those with data such as the address,
port and endpoint provided per RO (see "Annex A" to consult them) or enabling/disabling features during test-
ing phases, such as RSpec validation, credential verification and so on. After introducing the Monitoring System
(MS), we saw necessary to add extra configuration files for CRM, SDNRM and SERM in order to provide the miss-
ing information on how to access monitoring information (i.e. metrics) on the hardware. This information is
not provided by the GENIv3 APIs, therefore is filled internally by each administrator during the configuration of
RO/MRO. o help with this process, a sample configuration file is provided with blanks to be filled.

The internal communications of RO-MRO have been interactively tested and validated to consolidate the
intra-region orchestration workflows and GENIv3 API contents described in WP3 deliverables, e.g. towards the
resource database, the various RMs or the northbound API to users.

3.2 SDNRM

SDNRM provides users with the possibility of defining a number of flows (traffic rules) over a subset of physical
devices, and the administrators with the ability of granting and provisioning them. This component, coming
from previous FP7 projects and extended by i2CAT, was deployed in almost every FELIX island; namely i2CAT,
PSNC, EICT, KDDI and AIST islands. In the case of the iMinds island, the FOAM module (a component with similar
functionalities as SDNRM) was already deployed and thus used in that island.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 12

http://www.ict-felix.eu/?page_id=332

FELIX Components Validation Report .

Monitor Self Test Status:

Monitoring Overview for felix

Testbed Name Ping Latency (ms) GetVersion Status Free Resources Agpregated Status Login Status
IAIST openflow (SDNRM) no data
JAIST RO no data
|AIST SERM no data
JAIST TNRM no data
[AIST VTAM (CRM) no data

EICT openflow (SDNRM)
EICT VTAM (CRM)

i2CAT MRO

i2CAT openflow (SDNRM)

12CAT RO
i2CAT SERM

i2CAT VTAM (CRM)

KDDI openflow (SDNRM)

KDDI RO

PSNC openflow (SDNRM) no data
PSNC RO no data
PSNC SERM no data
PSNC VTAM (CRM) no data
Virtual wWall 1

Virtual Wall 2

Virtual Wall 2 (openflow)

Figure 3.1: Deployment of components in FELIX islands

The source of this component is available under the ocf branch (optin_manager folder) and instructions are
provided in the corresponding section of the GitHub public wiki page. In the source, a sample configuration
Python file (localsettings-example) is provided so that it can be copied and filled by the island administrator into
a new file (localsettings.py), containing details such as the access for the MySQL database, administrator e-mail
for notifications and so on.

The second step of configuration requires the installation of the module in the server and accessing to the

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 13

FELIX Components Validation Report

administrator GUI to set up connection to the FlowVisor slicing SDN controller that operates in each FELIX island.

As the RO performs an intra-island monitoring process (i.e. retrieve SNMP access information for its managed
SDN-enabled HW equipment), a new sample configuration file (sdnrm.json.example) was added in the resource-
orchestrator branch to include such non-public information. This file must be copied as a new file (sdnrm.json)
and filled with the URN of each device and its IP, SNMP port and community string. Such information is to be
later provided to the (M)MS for internal use.

Finally, the information provided in the mentioned JSON file (plus a list of the ports to be monitored) is also
provided within the topology definition XML file of the SNMP manager, as part of another configuration step that
allows the perfSONAR Sequel service to retrieve metrics from the switches. Such components are third-party
tools that do not belong in MS or MMS, and are currently deployed in i2CAT and PSNC domains to provide metric
information to MS.

3.3 CRM

CRM is the software module that interfaces with the virtualisation hardware available at each domain so as to
create virtual machines. This component was developed fully by i2CAT and brought as well from previous FP7
projects. Within FELIX, it was subsequently extended by i2CAT and also by AIST, the latter adding interfaces and
developing required extensions to allow creation of VMs on top of KVM-enabled servers.

Therefore, there are two flavours, according to the equipment provided by the domain of each organisation:
XEN-CRM (the original version, deployed by i2CAT, PSNC and EICT) and KVM-CRM (the version extended by AIST,
currently deployed in AIST and to be placed in KDDI as well). The case of iMinds is a bit different, as its infras-
tructure runs with VirtualWall, an alternative to the combined CRM and SERM. In this domain, thus, they use
VirtualWall along with its implicit stitching technique.

The source of XEN-CRM is available under the ocf branch (vt_manager folder) and instructions are provided
in the corresponding section of the GitHub public wiki page. In a similar way as SDNRM, both flavours of CRM
provide a sample configuration Python file (mySettings-example) to be later copied and filled by the island admin-
istrator into a new file (mySettings.py). That file will contain details such as the access for the MySQL database,
administrator e-mail for notifications and so on.

The second step of configuration requires the installation of the module in the server and accessing the ad-
ministrator GUI to set up the ranges of IP and MAC addresses that are assigned under her domain, as well as basic
information about each server machine to be used for VM provisioning (e.g. name, OS, and more importantly,
the location (that is, address and port) of the agent software to send petitions, bridge interfaces and connection
of each server with the OpenFlow-enabled switches. This information is, among others, appropriately translated
from the physical, real configuration, into the network logical conformation that the users are aware of and which
is of use for their experiments. Specifically, the details provided to the experimenters contain which interface of
their VMs are connected to every switch, and are provided to them via the GENIv3 API (i.e. a ListResources call).

As with SDNRM, and SERM, a new sample configuration file (crm.json.example) was added in the resource-
orchestrator branch to include the information required for monitoring access, which is not provided by the
GENIv3 ListResources call. This file must be copied as a new file (crm.json) and filled with the same data and
purpose as for SODNRM.

3.4 SERM

SERM's functionality allows to send user traffic between islands via different types of transport networks (i.e.:
static/dynamic VLAN-based network provider services or GRE tunnels via Internet) and thus it must be deployed
in every FELIX island.

The SERM module, developed by PSNC, was deployed within the PSNC, i2CAT, KDDI and AIST islands. The
source code is available in the FELIX GitHub public repository, at the stitching-entity branch. The installation of

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 14

FELIX Components Validation Report

dependencies and the deployment of the SERM is performed in a way similar to that of the RO, as it follows a
similar structure and scripts for deployment.

There are two options for the configuration and deployment of the SERM component, which differ on the
way the stitching switch is controlled:

e SERM component interacting with Ryu [1]: this option was implemented in PSNC, KDDI and AIST islands
where a Ryu OpenFlow controller was set to run in order to manage the OpenFlow switch that was used
as the data plane stitching element.

e SERM component interacting with POX [2]: this option was implemented in the i2CAT island, as there
is a POX OpenFlow controller that manages the OpenFlow switch to be used as the data plane stitching
element.

In each island deploying SERM component, a configuration file (se-config.yaml) is to be filled by the domain
administrator with the information on stitching switch ports and related remote ports located in different islands,
as well as information related to TNRM's functionality (e.g. type of transport network, VLAN range, etc.). In
the YAML configuration file, it is also declared whether the SERM module communicates with the Ryu or POX
controller in order to control the stitching switch.

The initial deployment of the SERM component was also carried out in EICT, but due to some differences in its
network topology (i.e. no NSl inter-connections are provided), the deployment process was held until the TNRM
supports GRE tunnels; when that module will be deployed. A different approach was taken in case of iMinds
island. As iMinds' VirtualWall (somewhat equivalent to CRM) provides an integrated SERM functionality within
their VirtualWall environment, the SERM component was not deployed there.

3.5 TNRM

The Transit Network Resource Manager (TNRM) is one of the special software components within the FELIX ar-
chitecture, since it is not distributed over the different domains in FELIX. Instead, it is deployed on the AlIST island,
where it functions as an access point to the transit network domain and as a central repository to look for NSI
endpoints offered by each island in FELIX.

The deployment of the module was carried out in a similar way as the other FELIX RMs, yet deployed in a
single point, following a centralised fashion. TNRM is based on the eiSoil library and runs as a Flask server that
exposes a XMLRPC API, which is GENIv3-compliant. Details on the deployment address, port and endpoint are
provided in "Annex A", used to properly configure peers in RO and MRO.

Following on the recommendations from the Year 2 Review meeting, the support for creating inter-island
connections via GRE tunnels in TNRM is under development at the time of writing this deliverable. This additional
capability will increase the flexibility of the TNRM in establishing inter-domain connections using different types
of technologies. This is part of the ongoing Year 3 development plans and details of the GRE-support in TNRM
will be outlined in future documents.

3.6 Monitoring System

The Monitoring System (MS) is developed by KDDI and is the FELIX software module that collects the monitoring
data of the resources available or provisioned in the FELIX infrastructure, to later provides it to both users and
administrators. As with RO and MRO, MS can also run in two operation modes: standard MS and Master MS
(MMS).

MS is responsible for the monitoring of each island and aggregate and forward it to the Master MS. Therefore,
an MS instance must run per each FELIX island. As for MMS, it provides all monitoring data of FELIX infrastructure,
receiving the aggregate data from the MS in each island. The MS module is deployed in PSNC, i2CAT, AIST and

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 15

FELIX Components Validation Report

KDDl islands; and the MMS module is deployed in KDDI. Also, the GUI tool (Expedient's monitoring section) is co-
hosted on the MMS machine and provide the visualisation on the monitoring data to users and administrators.

In order to deploy, the source can be downloaded from the monitoring branch (msjp folder). By following the
instructions available in the module and in the GitHub public wiki page, the MS or MMS module can be installed
in the appropriate domain. First, dependencies are installed and a number of MySQL databases are created.

Two configuration files (mon_api.conf and mon_col.conf) are provided to be filled by the domain adminis-
trator with the Monitoring APl and Monitoring Data Collector, respectively. Those files define configuration data
such as the address and port of MS, connection to its MySQL DB, against the corresponding MMS (currently,
MMS-JP in KDDI) or to the PerfSONAR SequelService to gather metrics of HW equipment through SNMP. Finally,
APl and collector services are to be run in daemon mode to allow communication to MS and to retrieve metrics
from devices, respectively. As mentioned in some of the FELIX RMs (i.e., CRM, SDNRM and SERM), the informa-
tion on the JSON configuration files for the RMs that is provided in the RO source is then used by the MS collector;
therefore interrelating configuration processes of those RMs with that of MS.

3.7 Public Monitoring

Public Monitoring includes basic status information about the facility, such as whether the servers and the net-
work connectivity are working as expected. This information is generally available within the stack in each domain
(i.e. obtained through some of the exposed APIs of the different RMs).

The source for Public Monitoring is available in the GitHub public repository, under the monitoring branch
in a folder named public. The configuration step consists on copying the localsettings.py.EXAMPLE into localset-
tings.py and filling with the appropriate access data to contact the private APIs on the required RMs. Unlike the
Monitoring System, the data is not directly monitored from the resources, which is why the Public Monitoring is
a standalone component not dependent on the Monitoring System and it does not need to be deployed on each
FELIX island.

Since the volume of monitoring data and status information is minimal, Public Monitoring is performed and
deployed in a centralised manner, from where is linked to the FELIX website to permit public access. The Pub-
lic Monitoring tool runs at the iMinds facilities (bttp://157.193.215.150:8080/island/<island_name>),
where it periodically polls specific APIs on the different CRM and SDNRM modaules that are deployed the moni-
tored domains. This enables retrieving topology and availability information on some of the hardware provided
by each domain.

3.8 AAA

C-BAS (Certificate-based AAA for SDN Experimental Facilities) realises user access control, policy enforcement,
and trust anchor for federation formation.

The source of C-BAS can be found in the C-BAS public GitHub repository under the EICT account. Instructions
on configuring the module are provided in both that repository and in the FELIX GitHub wiki; and mainly corre-
spond to the copy and modification of JSON files to define domain parameters and URNSs, and to the generation
of per-domain certificates.

Each island shall run its local instance of C-BAS so that it can perform a range of AAA related tasks including,
but not limited to user registration, management of user credentials, management of slice and project objects
and their membership, logging of user actions, etc. C-BAS is currently deployed in PSNC, EICT and i2CAT. In
addition, two master islands (AIST and i2CAT) will maintain C-BAS instances running with a special configuration
which allows them to serve as trusted repository of root certificates for all islands in the FELIX federation. The
deployment of C-BAS in master islands is planned for Y3.

In that sense, and conforming to strict security measures, root certificates of member islands of FELIX feder-
ation will be manually configured in the master C-BAS instances which gets periodically pulled by C-BAS instances

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 16

http://157.193.215.150:8080/island/

FELIX Components Validation Report

of federation member islands along with corresponding Certificate Revocation Lists (CRLs). A master C-BAS will
periodically pull CRL from its member islands as well as from the other master island, e.g., master island of Eu-
rope pulls CRLs from all islands in Europe and from master island in Japan. This way, adding a new island in the
federation would be as simple as configuring its root certificate in the master islands. The vice versa would hold
for removing an island from the federation.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 17

FELIX Components Validation Report

4 Testing of Functionalities per Component

In this section we present detailed information on the testing procedures performed for each FELIX software
component to verify its proper behaviour and matching to design and requirements.

The aim of this chapter is not to present in depth the test results, logs or a history of the fixes carried out.
Rather, we aim at describing the sequence of steps followed to verify the coherent operation of a FELIX module.
We deem this information of higher interest for potential future developers of the FELIX public code base.

4.1 Resource Orchestrator

As previously described, RO is the FELIX component designed to orchestrate the end-to-end network service and
to reserve and monitor the underlying resources through RMs and MS. This module has been developed from
scratch in FELIX project.

The software system can operate in two operational modes: Resource Orchestrator (RO) per island and Mas-
ter Resource Orchestrator (MRO) per continent. The only difference is the meaning of the resources that it can
manage. Indeed, the RO is connected to the RMs in order to control the physical (i.e. Computing, SDN and Stitch-
ing) resources of the island in which it is installed. On the other hand, the MRO cooperates with the others ROs
and with the TNRM in order to set-up the inter-islands paths within the continent (i.e. Europe or Japan) realising
the architectural hierarchical approach described in the D2.2 document [3]. This different behaviour is simply
obtained changing some parameters (e.g. mro_enables) of the configuration file of the module. Moreover, set-
ting up a proper list of peers allows the component to activate the dedicated drivers to connect the interworking
modules.

Due to its peculiarity, the (M)RO has undergone a Sandwich Testing procedure. That means we had firstly
validated the procedures for the RO component following a Bottom-to-Up Testing approach, using an emulated
test environment with simulated RMs. In this phase, we have verified the basic functionalities of the module, i.e.
i) the compliance to the standard GENIv3 AP, ii) the correct internal workflow per each method. After that, we
have deployed an integration test environment composed of the RO and the not-simulated RMs. In this phase,
we have rechecked the previous results and introduced tests for the iii) installation of the stack and iv) security
aspects.

Once the previous points have been proved to work as expected, we introduced the MRO component fol-
lowing a Top-to-Down Testing approach. This allows us to verify the communication between the MRO and the
controlled components (i.e. ROs and TNRM) and to validate the v) correctness of the output parameters of the
northbound API, e.g. expiration dates being returned as datetime objects rather than as strings, etc.

4.1.1 Features validated

We broadly categorise those features of (M)RO that are of interest to the FELIX infrastructure as follows:

Compliance of the (M)RO's northbound APIs with the GENIv3 standard

e Correct internal behaviour for each method exposed by the northbound API

Correct behaviour for the resource management

Availability of the (M)RO module and the underlying RMs

4.1.1.1 Compliance of northbound API with GENIv3

Every FELIX software module exposing the GENIv3 APl must support the mandatory methods and arguments
detailed in the GENIv3 interface [4], and shall support some of the optional arguments as long as they provide
benefits to the experimenters or are commonly accepted by the third-party tools used by them.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 18

FELIX Components Validation Report

In Table 4.1 we present the supported GENIv3 methods with an indication of the arguments and the return

values.
Method Ingress Output
GetVersion
¢ options (not required) e geni_api
e geni_api_version
¢ geni_credential_types
e geni_ad_rspec_versions
e geni_request_rspec_versions
ListResources
e credentials ¢ advertisement RSpec
e options (e.g. version, available,
compressed)
Describe
e URNs e list of slivers (e.g. URN, alloca-
) tion/operation status, error)
¢ credentials
. * manifest RSpec
e options
Allocate
¢ slice URN e list of slivers
¢ credentials ¢ manifest RSpec
e request RSpec
e options
Renew
¢ URNs e list of slivers (with the new expi-
) ration time)
¢ credentials
e expiration time
e options
Provision
¢ URNSs o list of slivers
¢ credentials ¢ manifest RSpec
e options (e.g. bes-effort, end-
time, users)
Project: FELIX (Grant Agr. No. 608638)

Deliverable Number:
Date of Issue:

D4.1
01/09/2015

19

FELIX Components Validation Report

Status
e URNS e |ist of slivers

e credentials

e options

PerformOperationalAction

e URNS e |ist of slivers
e credentials

e action (e.g. "start", "stop",
"restart")

e options

Delete

e URNS e |ist of slivers
e credentials

e options

Shutdown
e URNS e XML-RPC boolean

e credentials

e options

Table 4.1: Ingress parameters and the output values

The methods and arguments above have all been manually tested throughout several testing stages, and
some of them are automatically tested in a periodic fashion through the F4F-FLS tool [5].

Besides the methods and arguments, the GENIv3 API is based on three different type of Resource Specifi-
cation (RSpec data models): the advertisement, the request and the manifest RSpecs. The structure of these
XML documents is described in the D3.1 deliverable [6] and schema examples can be found within the mod-
ules/resource/orchestrator/test/delegate/geni/v3/rspecs folder of the FELIX repository [7].

The validation of both the incoming (request) and outgoing (advertisement, manifest) RSpecs are compared
and then validated against XML schemas released by the GENI group; ensuring its correct syntax.

With the two validation steps mentioned above, the (M)RO is fully compliant with the GENI system. This
ensures proper federation with any other GENI-enabled testbed or tool.

4.1.1.2 Correct internal behaviour per method
In this paragraph, we summarise the internal workflow per method from an high-level point of view. It is impor-
tant to note that the (M)RO has a strong relationship with the other components in terms of the exchanged mes-
sages. All these messages are printed in the log-file of the process (i.e. modules/resource/orchestrator/log/resource-
orchestrator.log) in a pretty XML format.

In the GetVersion method, the (M)RO fills the XML-RPC structure with the proper values.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 20

FELIX Components Validation Report

In the ListResources method, the (M)RO first verifies the user credentials and then reads from the MongoDB
[8] database the information on the nodes and links for the C, SDN, SE and TN resources. At the end, the adver-
tisement RSpec is composed and returned to the client.

In the Describe method, the (M)RO verifies the user credentials and retrieves the information of the slice
composition from the database. Then, it sends the describe command to each involved RMs or ROs. When the
responses are correctly received, it creates the manifest RSpec and the list of slivers merging the output of the
corresponding message. This information is then returned to the client.

The Renew, Status and PerformOperationalAction methods are quite similar and we use the same template
for the implementation. In these methods, the (M)RO starts verifying the user credentials and reading the slice
composition from the database. After that, it sends the proper command (i.e. Renew, Status or PerformQOpera-
tionalAction) and, when it receives the responses, only the list of slivers is produced and returned to the caller.

The Allocate method is the most complex implementation we currently have in the code. After the verification
of the user credentials and the validation of the incoming request RSpec, the (M)RO tries to extend the request
adding the Stitching Entity information. Here, we use a dedicated pathFinder module that simply lookup the
database in order to fetch the missing resources description. When the request is completely reformatted, the
(M)RO analyses the schema extracting the C, SDN, SE, TN sections. Each section is then introduced in the allocate
command to the proper RM or RO. At the end, the (M)RO composes the manifest RSpec as sum of the received
responses and fills the list of slivers structure.

The Provision and Delete methods are also used to update the Monitoring System with the information related
to the slice. As usual, the user credentials are verified and the slice composition retrieved from the database. A
proper command (i.e. Provision or Delete) is sent to the RMs or ROs. In case of the Provisioning method, the
(M)RO forwards the slice information to the MSin order to start the metering collection for the involved resources.
On the other hand, in case of the Delete method, the module informs the MS to stop the monitoring activities.
The manifest RSpec and the list of slivers are formatted and returned.

The Shutdown command is actually not forwarded to any RM or other RO in the system, in order to prevent
the power-off of any part of the FELIX testbed.

4.1.1.3 Correct behaviour for the resource management
Using a client (e.g. OMNI) that supports the GENIv3 interface, the experimenter can easily manage resources, i.e
i) retrieve the list of available devices, servers or nodes in the testbed, ii) reserve a group of resources, iii) check
the status of his/her reservation and iv) release the resources at the end of the experiments.

A correct set of GENIv3 methods should be called to realise these requirements, as briefly discussed here.

The getVersion and the listResources methods can be used to retrieve the XML document (advertisement
RSpec) that describes the available resources managed by the (M)RO.

The allocate (with the request RSpec), the provision and the performOperationalAction (with the start pa-
rameter) methods can be invoked to create a reservation and to configure the resources that belong to the slice.

The describe and the status methods show the status of the provisioned resources (manifest RSpec).

The performOperationalAction (with the stop parameter) and delete methods allow to release the resources
that became free and ready for a new reservation.

4.1.1.4 Availability of the (M)RO module and underlying RMs

The (M)RO is deployed in the servers of the FELIX testbed using some scripts that install the modules and their
dependencies automatically. In the same way, other scripts are used e.g. to generate the credentials, to con-
figure the modules, to create daemons/services, etc. Basically, the (M)RO is a python FLASK server running on
a configurable port and accessible with proper credentials. That means that no particular hardware constraints
are introduced.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 21

FELIX Components Validation Report

4.1.2 Validation procedures

The validation and testing procedures carried out to test the functionalities, the availability and the connectivity
against the (M)RO have been continuously implemented during both the development and deployment phases
of the project. The following sections summarise the used tools and the results.

4.1.2.1 Compliance of northbound API with GENIv3
In order to verify the compliance of the (M)RO northbound interface with the GENIv3 standard, we have used
the OMNI client.

The OMNI client is used to manually call each method validating the received output. It is worth noting that
the tests were conducted having a single RM (or RO) as a remote peer of the (M)RO in order to have a simplest
test environment. Moreover, the tests were repeated for every RM (i.e CRM, SDNRM, SERM and TNRM) and for
the RO.

During the tests, we verified that:

The methods must be concluded with zero errors reported on the screen

The sliver description must have a unique identifier for the resource (URN)

The expiration time must be reported

The status of the resource must be as expected

The manifest RSpec must include the details of the slice reservation

4.1.2.2 Correct internal behaviour per method

We have massively used the log file to validate the correct behaviour per each method of the interface. Using
the OMNI tool, each method of the APl was called and the log file deeply analysed. In case of errors, the problem
was reported to the development team.

In order to facilitate this procedure, the colorlog module has been introduced, producing different colours for
the different levels, e.g green for debug, blue for info, red for error, etc. Moreover, we have added the timestamps
and a proper handler for the dumping of the messages.

As result, we have no errors in the normal test conditions.

4.1.2.3 Correct behaviour for the resource management
As for the previous case, the log file helped us to verify the correct behaviour for the resource management. We
validated the exchanged messages and the fields of the XML body. Moreover, the status of the resources has
been also checked to verify it was as expected.

The result is that the workflow of the operations is fully supported by the module.

4.1.2.4 Availability of MRO and RO modules and underlying RMs
The connectivity to the (M)RO is periodically evaluated, by means of a testing tool whose results are publicly
available in a specific FELIX section at the Fed4FIRE's First-Level Support [5] site.

The monitoring procedure evaluates that the following conditions are appropriate:

¢ Connectivity of the XMLRPC server exposed by (M)RO for every domain that deploys them.

¢ Validity and matching of credentials (X509 certificate and key) exposed by the XMLRPC server: certificates
must be valid and the same across sessions.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 22

FELIX Components Validation Report

As said before, the tests are performed on a periodic basis. Specifically, connectivity tests are run every 5
minutes, whereas asserting the validity of certificates and retrieving the heterogeneous resources advertised by
the (M)RO is performed every 10 minutes.

Two methods are called for both RO and MRO: GetVersion and ListResources. Other methods are explicitly
related to the kind of the managed resource and deeply influenced by the internal logic of each RM. Therefore,
the validation procedures are carried out in a per-RM fashion, rather than from the upper layers of RO and MRO.

In this aspect, we have evaluated the possibility to build a consolidated system test in order to validate the
correct resource management through RO and MRO. Some aspects have been highlighted:

¢ the life cycle of the resources can already be tested through their respective RMs
¢ tests with more than one resource per time can add complexity to the testing procedures

¢ unclear test environment can easily generate confusion on the cause of the error

On the other hand, we admit that a more complex system test would help us to prepare a more resilient and
robust orchestrator.

4.2 Software-Defined Networking Resource Manager

The Software-Defined Networking Resource Manager (SDNRM) is a FELIX software module based on a previously
existing component, called OpenFlow Aggregate Manager (OFAM) and developed under the OFELIA project. As
such, the core functionalities of SDNRM were already tested in that project. In FELIX, the work performed in
SDNRM is related to the extension and bug fixing of its northbound GENIv3 API [4] as well as of some of the
internal submodules in use and which persist the information of reserved and provisioned FlowSpace rules in the
database and that communicate with the FlowVisor module.

We explain below the validation procedure and detail the tests that have been carried out to validate proper
behaviour and interaction with GENI-compliant clients, whether third-party clients (OMNI, jFed) or other FELIX
modules (Resource Orchestrator).

4.2.1 Features validated

We can confirm that the requirements for SDNRM, which were introduced in deliverable D2.2 [3], have been met.
Specifically, the following requirements are implemented and work as expected:

¢ Define the special purpose controller of the testbed, which is previously configured through SDNRM's
management GUI

e Approve or deny the experimenters' requests, also managed through the SDNRM's management GUI
¢ Authenticate experimenter credentials according to a chain-of-trust model

¢ Allow an experimenter to request a FlowSpace with a unique controller (unique combination of IP and port)
and a subset of matching conditions to define custom rules on the selected OpenFlow-enabled switches

The northbound API of SDNRM that offers experiments the ability to request resources, as defined in the
latest bullet point, is the main objective of the work carried out on SDNRM for FELIX. Specifically, the extensions,
modifications and bug fixing performed were focused on the correct interoperability of the module with others,
via the SDNRM's northbound API. In order to ensure proper functioning, we divided the validation and testing
phases as follows:

e Compliance of SDNRM's northbound API with the GENIv3 standard
¢ Correct internal behaviour for each method exposed by the northbound API

¢ Availability of the SDNRM module and its underlying infrastructure

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 23

FELIX Components Validation Report

4.2.1.1 Compliance of northbound API with GENIv3

Having standard northbound interfaces is key for the interoperability between modules. In FELIX, we deemed
convenient to use the GENIv3 API as the northbound interface of every Resource Manager (RM). The wide usage
of this APl makes it possible for a module exposing this interface to integrate with any existing compliant client or
federation network, and requiring little development effort to that. Also, a consistent northbound API was much
needed to reduce development efforts on the orchestrator module.

This being said, the exposed API must accept the required methods, the different mandatory arguments
(credentials, user keys, expiration time), and options (geni_best_effort). The APl may also allow optional ones
(currently: geni_available, geni_compressed, geni_end_time; in the future: geni_allocate). The implementation,
subsequent extensions and bug fixing have been performed taking the GENIv3 AM APl documentation [4] as the
main reference, whereas the validation has been performed manually through both OMNI and jFed.

4.2.1.2 Correct internal behaviour per method

Whilst not directly responsible for the interoperability with other modules, the internal behaviour of any Resource
Manager must be sound enough to operate under a combination of options and of slivers' statuses. The validation
of the proper internal behaviour has been performed by means of unit testing. Such tests have helped to validate
the minimum component (methods and functions), internal to SDNRM.

4.2.1.3 Availability of SDNRM module and underlying infrastructure

Finally, having a monitored infrastructure helps identifying issues on the connectivity and the availability. In
the case of SDNRM, the monitoring is performed at two levels: software (the SDNRM's server and implicitly,
the FlowVisor component) and hardware (the OpenFlow-enabled switches). Therefore, the connectivity to the
FELIX SDNRM is periodically tested through a GENIv3-enabled client; whereas the connectivity is also frequently
checked against the OpenFlow-enabled switches.

4.2.2 Validation procedures

4.2.2.1 Compliance of northbound API with GENIv3

The first item on the feature list attempts to determine whether the developed APl complies with the standard.
The motivation of these tests is to pinpoint if there is any lack of features or options, specially those that are
compulsory. The tests were carried out through an automated testing module (jFed's automated testing), already
existing in Fed4FIRE, and which can be manually invoked or consulted through the First-Level Support Fed4FIRE
website [5]. Whichever the case, this module performs regular calls to the northbound GENIv3 APIs of SDNRM
and checks that the following items work as expected:

¢ Mandatory GENIv3 methods are supported by SODNRM.
¢ Required arguments and options for the aforementioned methods are also supported.

e Correctness and authenticity of the connections established with the SDNRM server.

The aforementioned items are tested frequently, in an automatic fashion. Specifically, the following tests are
checked:

e Proper return of basic RM information.
— Tested methods: GetVersion
e Datapaths and ports available for use in each island.

— Tested methods: ListResources

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 24

FELIX Components Validation Report

* Proper reservation, provisioning, instantiation and description of resources.
— Tested methods: Allocate, Provision, PerformOperationalAction, Describe

e Appropriate instantiation of the OpenFlow FlowSpace.

The validation of the GENIv3 APl is performed in a very similar fashion for every FELIX RM, taking into account
natural differences in the internal behaviour and thus the behaviour on a reservation or provisioning procedure.
All in all, validation is pretty much the same for all of them and therefore similar sections in the rest of the
document will refer to this one for further details.

In SDNRM, two additional methods are tested in a slightly different way: Renew (to extend the expiration
date of a FlowSpace over time) and Status (retrieve the status for a number of FlowSpaces). The first feature was
manually tested by using OMNI and jFed clients and validating that the expiration date was effectively extended
(e.g. FlowSpaces would not be automatically un-granted past the original date, but only after the extended time).
The second feature is internally served through the Describe method, which is included in the automated testing
through the FLS portal and tools.

The results of these tests are available as a specific section in the FLS Fed4FIRE website. This has been com-
monly used by FELIX developers and infrastructure administrators to ensure proper availability of the resources
in their domain.

4.2.2.2 Correct internal behaviour per method

The correctness of the workflow internal to the SDNRM submodules is also important to show consistent and
robust operation. The validation process is performed here by testing incoming requests, arriving to the manager
and going down to the driver. It also takes into account the returned information coming from the manager and
going down to the driver. For that matter, tests have been automated to ensure a proper internal workflow. Unit
tests for the involved methods can be found in the FELIX repository, located under the corresponding folder [9]
within the ocf branch.

Specifically, the unit tests check the proper retrieval of the information on the physical resources (switches/datapaths
and ports), exposed via the ListResources method. The retrieval and parsing of such resources is performed by
the Driver component, which is located at the lowest software layer within SDNRM, therefore is directly placed
above the domain's slicing controller (FlowVisor). In last instance, FlowVisor is considered by SDNRM as a sort of
resource to be managed.

Besides testing the proper advertisement of the physical resources, we have implicitly validated the proper
internal behaviour by requesting resources manually and through means of the OMNI and FLS tools.

4.2.2.3 Availability of SDNRM module and underlying infrastructure
Besides the proper functioning of the exposed methods and its internal processing within SDNRM, we monitor
the availability of both software (connectivity to SDNRM) and hardware (switches up and running) resources.
The connectivity to the FELIX SDNRM software module is periodically tested through the FELIX section in
the Fed4FIRE's First-Level Support [5] site. On the other hand, the connectivity checks against the underlying
virtualisation servers is done through the Public Monitoring, which is available at http://157.193.215.150:
8080/island/<N>, where N can be any FELIX infrastructure, namely "iMinds", "i2CAT", "PSNC", "EICT", "AIST"
or "KDDI".

Availability of management software
The connectivity check performed on the SDNRM modules ensures that connections against the RM can be es-
tablished.

¢ Connectivity of the XMLRPC server exposed by SDNRM at each island.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 25

http://157.193.215.150:8080/island/
http://157.193.215.150:8080/island/

FELIX Components Validation Report

¢ Validity and matching of X509 certificates exposed by the XMLRPC server: certificates must be valid and
the same across sessions.

Tests are performed on a periodic basis. Specifically, connectivity tests are run every 5 minutes, whereas
the check of the validity of certs, and the diverse information of the RM and the available switches and ports is
checked every 10 minutes. Finally, the basic life cycle of the resources is tested twice a day, where the reservation,
provisioning, instantiation and description (Describe method) of granted resources are tested.

Availability of data plane

The Public Monitoring module functions as a stand-alone software tool deployed in the FELIX infrastructure. Its
objective is to clearly identify the availability of the physical infrastructure supporting the FELIX SDNRM and CRM
modules. In order to check connectivity, the tool communicates periodically with internal APIs offered by the
SDNRM and CRM modules. Among other parameters, the interval of seconds between launches of threads is
configurable, and defaults to 120 seconds.

Upon connection with a given domain, for the case of SDNRM, the Public Monitoring retrieves a detailed list
of OpenFlow-enabled (physical or virtual) switches indirectly managed by SDNRM, and parses the information
obtained. After interpreting the data, the internal database is updated and the website is updated with the new
information, namely the name of the switch manufacturer and the specific switch model, the internal name and
dpid given to the switch and, finally, the status.

4.3 Computing Resource Manager

Similarly to the SDNRM, the Computing Resource Manager (CRM) is a FELIX software module based on a previ-
ously existing component, called Virtualisation Technology Aggregate Manager (VTAM) and developed under the
OFELIA project. As such, its core functionalities were already tested there. The work in SDNRM performed in
FELIX is related to the extension and the bug fixing of its northbound GENIv3 API [4] and of some of the internal
submodules being used to attend the requests coming from the northbound interface.

In the following sections we detail the validation and testing procedures carried out to ensure proper inter-
working with GENI-compliant clients, whether third-party clients (OMNI, jFed) or other FELIX modules (Resource
Orchestrator).

4.3.1 Features validated

The main extensions and improvements performed on CRM deal with the proper interoperability of this module
and others via the northbound API of the CRM. To validate its correct functioning, we divided the validation and
testing phases as follows:

e Compliance of CRM's northbound APl with the GENIv3 standard
¢ Correct internal behaviour for each method exposed by the northbound API

¢ Availability of the CRM module and its underlying infrastructure

4.3.1.1 Compliance of northbound API with GENIv3
As explained previously for the SDNRM validation, exposing standard northbound interfaces is key for the inter-
operability between modules. RMs in FELIX use the GENIv3 API for that matter, which ensures easy integration
with other infrastructures and almost direct usage by any client supporting GENIv3 API.

The API exposed by CRM must accept the same required methods and arguments and shall accept some of
the optional ones; as described in SDNRM's Compliance of northbound API with GENIv3 section. The validation
of the interface has been carried out in the same way as well.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 26

FELIX Components Validation Report

4.3.1.2 Correct internal behaviour per method

In the same way as explained in SDNRM section, the internal behaviour of the CRM is verified by means of unit
tests over its methods and functions to assure it can operate under different combinations of options and slivers'
statuses.

4.3.1.3 Availability of CRM module and underlying infrastructure

The availability of software and physical resources is another item to have in mind when it comes to testing. It
is necessary to identify possible issues with the connectivity to the software module or its underlying hardware,
as well as it is important to detect malfunctioning hardware. Therefore, the connectivity to the FELIX CRM is
periodically tested through a GENIv3-enabled client; whereas the connectivity is also frequently checked against
the virtualisation servers.

4.3.2 Validation procedures

4.3.2.1 Compliance of northbound API with GENIv3

The implementation of this interface and its subsequent extensions and bug fixing was based on the GENIv3
AM API [4] documentation. On the other hand, the validation process must test the support for, at least, the
mandatory methods, arguments and options. During validation, we checked that the following items work as
expected:

¢ Mandatory GENIv3 methods are supported by CRM.
¢ Required arguments and options for the aforementioned methods are also supported.

¢ Correctness and authenticity of the connections established with the CRM server.

The aforementioned items are tested frequently, in an automatic fashion. Specifically, the following tests are
checked:

e Proper return of basic RM information (GetVersion method) and virtualisation servers available for use in
each island (Listresources method).

— Tested methods: GetVersion, ListResources.
¢ Proper reservation, provisioning, instantiation and description of resources.
— Tested methods: Allocate, Provision, PerformOperationalAction, Describe.

¢ Appropriate instantiation and key contextualisation into the VMs.

However, this does not cover the full set of methods of the API. Two methods are missing: Renew (to extend
the expiration date of a VM over time) and Status (retrieve the status of one or multiple VMs). The first fea-
ture has been manually tested by using OMNI and jFed clients and validating that the expiration date had been
effectively extended (e.g. VMs would not be automatically deleted passed the original date, but only after the
extended time). The second feature is internally served through the Describe method, which is already covered
by automated testing through the FLS portal and tools.

The results of these tests are available as a specific section in the FLS Fed4FIRE website [5]. Such site is com-
monly used by FELIX developers and infrastructure administrators to ensure proper availability of the resources
in their domain.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 27

FELIX Components Validation Report

4.3.2.2 Correct internal behaviour per method
The second item seeks to verify the correctness of the internal workflow of requests. That is done by testing
incoming requests that arrive to the manager and traverse all way down until arriving at the driver. It also takes
into account the returned information coming from the manager and going down to the driver. For that matter,
tests have been automated to ensure a proper internal workflow. Unit tests for the involved methods can be
found in the FELIX repository, located under the corresponding folder [10] within the ocf branch.

Looking into detail, the unit tests in CRM look for a proper behaviour/output on the following:

e Management of unique identifiers (URN, HRN) for resources: ensure correct retrieval of the identifiers,
appropriate parsing of authority, slice and sliver entities, and correct translation of URNs into HRNs and
vice-versa.

e Management of reservations: validate that reservations are assigned the default expiration time (1 hour)
and ensure proper type handling during the management of the projects and slices.

e Advertising resources: return (un)available servers, return slivers per slice, etc.
e Management of slivers: correctly starting, stopping, rebooting, deleting and renewing resources.

¢ Internal management: ensure credentials are verified correctly, handlers are set up as expected, and re-
source specifications are accurately translated into an internal representation (model) used within internal
components.

The previous tests cover pretty much the full experimenter life cycle, yet further manual tests have been
performed during the integration phase with the Resource Orchestrator (RO). These manual tests have been
carried out both manually (using a third-party client, such as jFed or OMNI) and also by using the RO to proxy
requests to its managed RMs.

4.3.2.3 Availability of CRM module and underlying infrastructure

Besides the proper functioning of the exposed methods and its internal processing within CRM, we monitor the
availability of both software (connectivity to CRM) and hardware (virtualisation server) resources. The connec-
tivity to the FELIX CRM is periodically tested through the FELIX section in the Fed4FIRE's First-Level Support [5]
site. The connectivity checks against the required, underlying virtualisation servers is done through the Public
Monitoring, which is available at http://157.193.215.150:8080/island/<N>, where N can be any FELIX
infrastructure, namely "iMinds", "i2CAT", "PSNC", "EICT", "AIST" or "KDDI".

Availability of management software
The monitoring of the software part validates the following:

e Connectivity of the XMLRPC server exposed by CRM at each island.

¢ Validity and matching of X509 certificates exposed by the XMLRPC server: certificates must be valid and
the same across sessions.

Tests are performed on a periodic basis. Specifically, connectivity tests are run every 5 minutes, whereas the
check of the validity of certs, and the diverse information of the RM and the available servers is checked every
10 minutes. Finally, the basic life cycle of the Virtual Machines (VMs) is tested twice a day. To that end, the tests
issue reservation, provisioning, instantiation and description (Describe method) commands over the CRM. In the
case of CRM, and implicit to the instantiation process, key contextualisation is performed on the VMs to grant
access to a number of required users.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 28

http://157.193.215.150:8080/island/

FELIX Components Validation Report

Availability of data plane

The Public Monitoring module was already introduced in the section for SODNRM. As mentioned there, that tool
polls periodically every island for information on physical resources managed by both CRM and SDNRM modules.
As for the case of CRM, once the Public Monitoring tool connects to a specific internal API, the Public Monitoring
retrieves a detailed list of virtualisation servers, indirectly managed and contacted by CRM, and parses the infor-
mation obtained. After interpreting the data, the internal database is updated and the website is updated with
the set of information, namely the model and internal name given to the server, its RAM, the OS running in the
server (defaults to Debian Squeeze), the virtualisation technique (defaults to XEN), the OS running in the server
and, finally, the availability (up/down) of the server.

4.4 Stitching Entity Resource Manager

The Stitching Entity Resource Manager (SERM) is a component, developed from scratch in the context of the FELIX
project, that participates in the inter island network provisioning. While the Transit Network Resource Manager
(TNRM) activates the inter-island links the SERM is in charge of interconnecting the links (dynamically created by
TNRM or statically by other network tools) with the local SDN island. In fact, this is ensured by the switching rules
configuration (e.g. adding OpenFlow flows) on the switching device (Stitching Entity). The stitching concept has
been introduced by the GENI (Global Environment for Network Innovations) initiative [11], the draft description
can be found in the "GENI Network Stitching -- Overview" document [12].

The SERM, like other FELIX modules, offers a similar northbound GENIv3 API. The SERM allows an experi-
menter to request, update and delete stitching resources (in fact the switching rules). This module also acts as
an interface between the RO (Resource Orchestrator) and Stitching Entity (switching device), allowing to manage
the latter.

4.4.1 Features validated

The features of SERM that are in scope of validation are:

e Compliance of the SERM's northbound APIs with the GENIv3 standard
e Correct internal behaviour for each method exposed by the northbound API
¢ Correct behaviour for the resource management

¢ Availability of the SERM module

4.4.1.1 Compliance of northbound API with GENIv3

As for all the Resource Managers in the FELIX software stack, the SERM must support the mandatory methods
and arguments from the GENIv3 interface, as detailed in [4]. The list of GENIv3 methods and arguments that are
supported by every RO and RM is detailed in Table 4.1.

The GENIv3 APl is based on three different type of Resource Specification: the advertisement, the request
and the manifest RSpecs. The detailed structure of the XML documents are presented in the D3.3 deliverable.
The example schemas can be found in the source code at
modules/resource/manager/stitching-entity/test/delegate/geni/v3/rspecs folder of the FELIX repository.

Each incoming RSpec is compared and then validated against XML schemas released by the GENI group. That
means that the SERM is fully compliant with the GENI system allowing us to provide a federation with the GENI
testbed.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 29

FELIX Components Validation Report

4.4.1.2 Correct internal behaviour per method
In the same way as in the (M)RO section, the expected effect per method for the SERM is presented. It is im-
portant to note that both components have a strong relationship and the behaviour of each method is very
similiar. Nevertheles, a description of each method behaviour is also presented in order to provide the specific
details. Furthermore, all the messages are printed in the log-file of the process (i.e. modules/manager/stitching-
entity/log/stitching-entity.log) in a pretty XML format.

The GetVersion method fills the XML-RPC structure with the proper values.

In the ListResources method, the SERM first verifies the user credentials and then reads from the mongoDB
database the information on the nodes and links for the SE resources. At the end, the advertisement RSpec is
composed and returned to the client.

In the Describe method, the SERM verifies the user credentials and retrieves the information of the slice
composition from the database. Then, it creates the manifest RSpec and the list of slivers merging the output of
the corresponding message. This information are then returned to the client.

The Renew, Status and PerformOperationalAction methods have the same behaviour as in the (M)RO.

In the Allocate method first the verification of the user credentials and the validation of the incoming request
RSpecis being processed. Then SERM checks in its local mongoDB database if the requested resources (VLANs per
ports) are available to reservation and/or if are not currently reserved by the other reservation. If the resources
are free then SERM allocates them in the database and prepares the manifest RSpec as a list of slivers structure.

The Provision method is very specific for each component. In SERM, first the verification of the user creden-
tials and the validation of the incoming request RSpec is being processed. Then the method changes the resource
state in the local mongoDB database in order to allow perform operational actions on them (in fact to allow onin-
serting new VLAN translations on the switching devices). The manifest RSpec and the list of slivers are formatted
and returned.

Finally, in Delete method first the verification of the user credentials and the validation of the incoming re-
quest RSpec is being processed. Then the VLAN translations rules are being removed from the switching device
and the resources are being released in the local mongoDB database.

4.4.1.3 Availability of SERM

The SERM is deployed in the servers of the FELIX testbed using some scripts that install the modules and their
dependencies automatically. In the same way, other scripts are used e.g. to generate the credentials, to con-
figure the modules, to create daemons/services, etc. Basically, the SERM is a python Flask server running on a
configurable port and accessible with proper credentials. That means that no particular hardware constraints are
introduced.

4.4.2 Validation procedures

The validation and testing procedures carried out to test the functionalities, the availability and the connectivity
against the SERM have been continuously implemented during both the development and deployment phases
of the project. The following sections summarise the used tools and the results.

4.4.2.1 Compliance of northbound API with GENIv3
In order to verify the compliance of the SERM northbound interface with the GENIv3 standard the OMNI client
has been used as a tool for invoking the tested methods.

The OMNI client is used to manually call each method validating the received output. It is worth noting that
the tests were conducted having a single SERM in order to have a simplest test environment. Moreover, the tests
were repeated with invoking the methods by the RO

The tests verified that:

¢ the methods concluded with zero errors reported on the screen

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 30

FELIX Components Validation Report

the sliver description had a unique identifier for the resource (URN)

¢ the expiration time was reported

the status of the resource was as expected

the manifest RSpec included the details of the slice reservation

4.4.2.2 Correct internal behaviour per method

During the tests the log file had been used to validate the correct behaviour per each method of the interface.
Using the OMNI tool, each method of the APl was called and the log file deeply analysed. In case of errors, the
problem was fixed by the SERM developers.

The correctness of the VLAN translation rules installation on the switching device had been confirmed by using
the Ryu REST APl and the method that displays all the OpenFlow rules. In first phase of the tests the software
Open VSwitch has been used as a Stitching Entity. In the next phase the proper VLAN translations on the Juniper
MX80 with the OpenFlow support was also tested.

As result, no errors in the normal test conditions occurred.

4.4.2.3 Availability of the SERM module
The connectivity to the SERM is periodically evaluated, by means of a testing tool whose results are publicly
available in a specific FELIX section at the Fed4FIRE's First-Level Support [5] site.

The monitoring procedure evaluates that the following conditions are appropriate:

e Connectivity of the XMLRPC server exposed by SERM for every domain that deploys them.

¢ Validity and matching of credentials (X509 certificate and key) exposed by the XMLRPC server: certificates
must be valid and the same across sessions.

As it was said before, the tests are performed on a periodic basis. Specifically, connectivity tests are run every
5 minutes, whereas asserting the validity of certificates and retrieving the heterogeneous resources advertised
by the SERM is performed every 10 minutes.

Two methods are called for SERM: GetVersion and ListResources.

4.5 Transit Network Resource Manager

The Transit Network Resource Manager (TNRM) is a new module developed from scratch within FELIX by AIST. This
module is based on the eiSoil library [13], presented in [14]. eiSoil runs as a Flask server that exposes a GENIv3-
compliant XML-RPC API. TNRM can support various transit network services such as NSI Connection Service v2
(NSI) [15] and GRE tunnelling. The first implementation supports NSI using the GridARS library, which is one of
the reference implementations of NSI.

The TNRM implementation translates an incoming GENIv3 request into the related NSI request, and sends
it to an NSI aggregator that coordinates the connection of inter-domain NSI-based transit networks. After the
TNRM receives the request result from the NSI aggregator, the TNRM returns the NSI result as a GENIv3 response
to the requester. In the following sections we describe the validation and testing procedures carried out to ensure
proper interworking with GENI-compliant clients, whether third-party clients (OMNI, jFed) or other FELIX modules
(Resource Orchestrator), and an NSI aggregator.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 31

FELIX Components Validation Report

4.5.1 Features validated

The northbound API of the TNRM, which offers experimenters the ability to request resources, makes it the main
objective of the work carried out within the RMs for FELIX.

The development of the TNRM module focused on its correct interoperability with other components, via
the TNRM's northbound API and the target transit network service APl for underlying infrastructure. As in the
case of other RMs, we divided the validation and testing phases as follows in order to ensure proper functioning:

e Compliance of TNRM northbound APl with the GENIv3 standard
¢ Correct internal behaviour for each method exposed by the northbound API

¢ Availability of the TNRM module and its underlying infrastructure

4.5.1.1 Compliance of northbound API with GENIv3

The TNRM also utilises the GENIv3 APl as northbound API to facilitate the interoperation between FELIX modules.
This exposed APl must accept the required methods, the mandatory arguments (credentials, user keys, expiration
time), and options (geni_best_effort).

The APl exposed by TNRM must accept the same required methods and arguments and shall accept some of
the optional ones; as described in SDNRM's Compliance of northbound API with GENIv3 section. The validation
of the interface has been carried out in the same way as well, being the only difference in validation the use of a
centralised instance for TNRM, within AIST premises.

4.5.1.2 Correct internal behaviour per method
As for the case of other RMs, the TNRM is not directly responsible for the interoperability with other modules.
However, the internal behaviour of any Resource Manager must be sound enough to operate under a combination
of options and of slivers' statuses.

Unit testing was used to validate the minimum methods and functions internal to the TNRM, which corre-
spond with the mandatory methods and arguments of any FELIX RM.

4.5.1.3 Availability of TNRM module and underlying infrastructure
A monitored infrastructure helps identifying issues on the connectivity and the availability. However, in the case of
the TNRM the monitoring of the NSl control plane is performed at the NSl aggregators. Therefore, the connectivity
to the FELIX TNRM is periodically tested through a GENIv3-enabled client in the FELIX section of F4F-FLS.

Note also that the NSI-based Transit Network is provided by multiple third-party domains external to FELIX
and it is not possible to confirm the end-to-end data plane connectivity automatically at this point.

4.5.2 Validation procedures

4.5.2.1 Compliance of northbound API with GENIv3

In order to verify the compliance of the TNRM northbound interface with the GENIv3 standard, we used the OMNI
client to manually call each method and validate the received output. We checked that the following items work
as expected:

e Mandatory GENIv3 methods are supported by the TNRM.
¢ Required arguments and options for the aforementioned methods are also supported.

e Correctness of the NSI connections established with the NSI aggregator.

Specifically, the following tests are checked:

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 32

FELIX Components Validation Report

e Proper return of basic RM information

— Tested methods: GetVersion

STPs (Service Termination Points) available for inter-island connections over NSI networks.
— Tested methods: ListResources

e Proper reservation, provisioning, instantiation, description, status, extension of the expiration date and
delete of resources.

— Tested methods: Allocate, Provision, PerformOperationalAction start/stop, Describe, Status, Renew,
Delete.

¢ Appropriate instantiation of the requested NSI connection.

4.5.2.2 Correct internal behaviour per method

Again, similar to the other RMs, the correctness of the workflow internal to the TNRM submodules is also impor-
tant to show consistent and robust operation. The validation process performed here tested incoming requests,
arriving at the manager and passed to the NSI aggregator. Any returned information from the manager and
passed to the NSI aggregator is also accounted for. It is important to note that these methods may fail because
the underlying NSl infrastructure is provided by multiple domains external to FELIX that are not necessarily dedi-
cated for the FELIX testbed. This does not indicate that the internal behaviour of the TNRM is at fault, but rather
also serves to demonstrate that the TNRM can correctly pass the information to the northbound side. Because
of the multi-domain path of NSI networks, these tests have been conducted manually to ensure a proper internal
workflow using the OMNI tool.

4.5.2.3 Availability of TNRM module and underlying infrastructure
In addition to the proper functioning of the exposed methods and the correct internal behaviour within the
TNRM, we monitor the availability of the connectivity to the TNRM through periodical tests in the FELIX section
of Fed4FIRE's First-Level Support [5] site.

The monitoring procedure evaluates that the following conditions are satisfied and a connection can be made:

¢ Connectivity of the XMLRPC server exposed by TNRM at the AIST island.

¢ Validity and matching of X509 certificates exposed by the XMLRPC server: certificates must be valid and
the same across sessions.

Tests are performed on a periodic basis, similar to other RMs. Connectivity tests are run every 5 minutes. Check-
ing the validity of certificates, the diverse information of the RM, and the available STPs is performed every 10
minutes. The two methods that are called for the TNRM for testing are: GetVersion and ListResources. Again,
because the NSI-based transit network is provided by multiple third-party domains external to the FELIX infras-
tructure, there is no common monitoring system to check for its data plane. As a result, the TNRM in FELIX does
not support data plane monitoring at this time.

4.6 Monitoring System

Within FELIX we have identified two types of monitoring: the Monitoring System (or Infrastructure Monitoring,
as named in D2.2 [3]) and the Public Monitoring (or Facility Monitoring in D2.2).

The Monitoring System deals with the monitoring of the actual resources, either available (physical) or pro-
visioned (within a slice). The Public Monitoring, on the other hand, includes basic status information about the

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 33

FELIX Components Validation Report

facility, such as whether the virtualisation servers and network devices are up or not, and also whether there is
proper connectivity to testbeds and their FELIX software modules.

The required features for the Infrastructure Monitoring have been developed within the Monitoring System
(MS). In a similar fashion to the Resource Orchestrator, the Monitoring System can work either as a Master MS,
in the upper layer; or as normal, single-domain MS (intermediate layer).

The Monitoring System collects the different types of information defined in D2.2 [3] for the Infrastructure
Monitoring, that is: i) the resources available and advertised by each facility (that is, physical resources and
topology), and ii) a subset of such available resources, which are provisioned to the experimenter (that is, slice
resources). The Monitoring System also collects metrics information from these physical resources (computing
nodes and network devices) that have been granted to a specific experimenter.

In order to obtain the information of the physical topology, the MS and MMS contact RO and MRO, respec-
tively. Given that RO is the entry point for resource request to any island or domain, the RO maintains an overview
on the managed resources. Any other physical information that is not obtained through the managed RMs is re-
trieved from the configuration files, available per domain and which must be previously filled by the domain's
administrator. With all this information available, RO retrieves the physical information, then parses it to comply
with the specific schema expected by MS. Finally, it posts such information to a specific REST APl endpoint ex-
posed by the MS. Similarly, MRO obtains such data from RO and aggregates the information, which will be posted
to the MMS.

Finally, to obtain the resources provisioned by a user in a given slice, the RO is again intercepting the experi-
menter's request and pushing a properly formatted XML document with the requested topology and resources,
with details such as management information for each resource (so the MS is able to access them for retrieving
metrics), name of the slice and the user, time-stamp with the last time this information was retrieved, etc. The
MS shall evaluate the correctness of the received information and store it on its internal database. When a user
accesses the Expedient GUI, the user will be able to see both the requested resources for a given slice, as well as
every resources available.

In the following sections we will explain which design requirements or features have been validated, and how.

4.6.1 Features validated

We broadly categorise those features of MS and MMS that are of interest to the FELIX infrastructure as follows:
¢ Correct behaviour of the MS API defined in FELIX project

¢ Correct internal behaviour for each endpoint exposed by the MS API
¢ Availability of the MMS and MS modules and the underlying components
4.6.1.1 Correct behaviour of the MS API defined in FELIX project

We defined the MS API so as to interact with other entities (GUI, MMS, MS and RO) for the monitoring of FELIX
infrastructure. In Table 4.2 we present the endpoint with an indication of the ingress information and the output

values.

Endpoint Method Contents Returns

http://<island_IP>:8448/topology/ GET List of all registered
topology

http://<island_IP>:8448/topology/ POST Topology

http://<island_IP>:8448/topology/physical/ GET Physical Topology

http://<island_IP>:8448/topology/slice/<slicelD> GET Slice Topology

Project: FELIX (Grant Agr. No. 608638)

Deliverable Number: D4.1

Date of Issue: 01/09/2015 34

FELIX Components Validation Report

http://<island_IP>:8448/monitoring/<RM> POST Monitoring
Data
http://<island_IP>:8448/monitoring/<RM>/physical/| GET Monitoring Data of phys-
ical resources
http://<island_IP>:8448/monitoring/<RM>/slice/ GET Monitoring Data of re-
sources provisioned for
the slice

Table 4.2: MS API endpoints with an indication of the arguments
accepted and the return values

The API handles the two types of data accepted through the API:

e Topology describes the topologies of the physical FELIX infrastructure and also of the slice provisioned by
the users.

e Monitoring is the actual monitoring data (metrics) of resources. We already described the structure of
such XML documents in [16]. The example data document are also provided.

The incoming and outgoing XML schemas are properly validated against the agreed schemas, defined for
interoperation with MS and MMS. Information errors on parsing can be found in various log files, filled up by the
Monitoring Service.

4.6.1.2 Correct internal behaviour per endpoint
In this section, we summarise the internal workflow associated with each endpoint, from a high-level point of
view.

e /monitoring-system/topology endpoint: (M)MS generates XML structures with all registered topology in-
formation (both for physical infrastructure and slice), when the endpoint is accessed through HTTP's GET
method. When some topology information is provided to the endpoint (HTTP's POST method), (M)MS first
verifies the XML schema and parses it to extract the expected data; then save the topology information
to the SQL database. In the event of invalid or incomplete data, errors are both written in the log and an
error message is provided as result.

e /monitoring-system/monitoring/<RM> endpoint: (M)MS first verifies the XML schema and parses it, then
save the time-series monitoring data of each Resource Manager (i.e. RM, SDNRM, SERM and TNRM) to
the SQL database. When the endpoint is accessed by an HTTP GET method (specifically, /monitoring-
system/monitoring/<RM>/physical) and slicelD, (M)MS search the monitoring data of the FELIX infrastruc-
ture resources related to the specified slice from the database and returns the XML structure with the
data to the client, if available. When the /monitoring-system/monitoring/<RM>/slice endpoint is accessed,
(M)MS looks up the database for the monitoring data of the allocated resources (for the specified slice),
to finally return the XML-formatted information with the metrics to the client.

4.6.1.3 Correct internal behaviour with other components
MS collects the monitoring data by interacting with third-party monitoring tools that retrieve measurements
directly from the physical hardware, server and network equipment. We use the following tools at this point:

e perfSONAR: widely deployed in the Research and Education Network as measurement tool, is used for the
monitoring of network equipment.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 35

FELIX Components Validation Report

e Zabbix: common monitoring tools for server, is used for the servers.

¢ NSI monitoring: proprietary monitoring tools for NSI, is used for the stats monitoring of the NSI connection.

4.6.1.4 Availability of MMS and MS modules and underlying components

The availability of the MS API can be checked by other monitoring tools (such as the visualisation tool, extended
for monitoring purposes), yet the focus of the availability checks is prominently focused on the modules that
manage resource and request management.

4.6.2 Validation procedures

The validation and testing procedures carried out to test the functionalities, the availability and the connectivity
against the (M)MS have been continuously implemented during both the development and deployment phases
of the project. The following sections summarise the used tools and the results.

4.6.2.1 Correct behaviour of the MS API defined in FELIX project

In order to verify the behaviour of the MS API, we have used the CURL client (commonly used as a client tool for
REST APIs), so as to manually call each API and validate the received output. Specifically, we checked that the
following items work as expected:

¢ The methods in the APl must conclude its operation without any errors

¢ All topology and monitoring data posted through the APl must be properly evaluated and saved correctly
into the database

e The proper data must be returned in response to the request from client

e The returned data must be correct according to the defined XML schema

4.6.2.2 Correct internal behaviour per endpoint
We have massively used the log file to validate the correct behaviour per each endpoint of the API. Using the CURL
client, each APl was called and the log file was deeply analysed. In case of errors, the problem was reported to
the development team.

In order to investigate in more detail, the MS outputs more detail log when it runs debug mode. As a result,
we have no errors in the normal testing conditions.

4.6.2.3 Correct internal behaviour with other components

The monitoring data retrieved from third-party monitoring tools is saved to the SQL database through the MS
APl. We have checked the consistency using data of third-party monitoring tools and verified that correct data is
stored in the database. In addition, the developed visualisation tool can be used to check the availability of the
monitoring data.

4.6.2.4 Availability of MS and MMS modules and underlying components
We can monitor the availability of MS by checking the HTTP service, since APl is served via web. Some monitoring
tools, such as Zabbix, can be used for that as well; but we do not use those at this moment.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 36

FELIX Components Validation Report

4.7 Public Monitoring

Inside the Public Monitoring (or Facility Monitoring), we divided the tasks it performs in two, according to their
scope:

o Testing availability of software modules

¢ Testing connectivity of hardware devices

The first one is covered by the First-Level Support site used at Fed4FIRE [5]. This has been possible after due
integration with the FELIX SW modules. Finally, the second check is performed within the Public Monitoring tool,
which provides status and other detailed information in the form of a separate, public website.

4.7.1 Features validated

We broadly categorise those features of Public Monitoring that are of interest to the FELIX infrastructure as fol-
lows:

¢ Correct behaviour of monitoring software modules.
e Correct behaviour of monitoring hardware connectivity.

¢ Availability of the Public Monitoring modules.

4.7.1.1 Correct behaviour of monitoring software modules
In this paragraph, we summarise the internal workflow monitoring software modules from a high-level point of
view.

The desired software component to be monitored is registered within the database, storing the necessary
parameters to generate a correct call to the software component. Those components are a subset of FELIX RMs
and are described in the sections above.

The main page shows an overview of the general status of the different software components deployed on
each island with the information of the last running tests. Each test call is executed every 5 min and the informa-
tion is stored and kept as a historic archive on the database to keep track of the availability.

4.7.1.2 Correct behaviour of monitoring hardware connectivity
We defined an endpoint for a web service that returns a formatted HTML webpage with the general overview of
the island connectivity. In Table 4.3, the URI format is presented:

Endoint Method Arguments Returns

http://157. GET name = {"iMinds", | List of resources within a
193.215.150: "i2CAT", "PSNC", "EICT", | given island
8080/island/<name> "AIST", "KDDI"}

Table 4.3: Public Monitoring web service URI

4.7.1.3 Availability of Public Monitoring modules

The Public Monitoring tool is software a standalone component. As such, it can be installed on any physical or
virtual machine without introducing any particular hardware constraints. To access the interface of the Public
Monitoring, an HTML standard browser can be used. In case of unavailability, an error message is displayed to
the user.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 37

http://157.193.215.150:8080/island/
http://157.193.215.150:8080/island/
http://157.193.215.150:8080/island/

FELIX Components Validation Report .fell)(

Also, it is possible to use third-party web monitoring tools to monitor the availability of the service.

4.7.2 Validation procedures

This section explains the validation procedures carried out to test the correct behaviour of the Public Monitoring.

4.7.2.1 Correct behaviour monitoring software modules

The Public Monitoring for software modules is an integration from Fed4FIRE where unit tests are used to validate
the behaviour of the core functions. Specific configurations inside FELIX project are verified using manual testing
to ensure test requests have the correct parameters. Figure 4.1 shows the main page of the Public Monitoring
with the status of different tests performed for each module.

Monitoring Overview for felix

Testbed Name Ping Latency (ms) GetVersion Status Free Resources Aggregated Status

IAIST openflow (SDNRM)
JAIST RO no data
|AIST SERM
JAIST TMRM no data
[AIST VTAM (CRM)
EICT openflow (SDNRM) no data
[EICT VTAM (CRM) no data
i2CAT MRO
iZCAT openflow (SDNRM)
26T RO
i2CAT SERM
IZCAT VTAM (CRM)
KDDI cpenflow (SDNRM) no data
KDDI RO
IPSNC openflow (SDNRM) no data
IPSNC RO no data
IPSNC SERM no data
IPSNC VTAM (CRM) no data

irtual Wall 1

irtual Wall 2

irtual Wall 2 (openflow)

Figure 4.1: Public Monitoring

4.7.2.2 Correct behaviour monitoring hardware connectivity

Manual testing is mainly used to check the correct performance of the monitoring connectivity. Activity is reg-
istered using log files, in case problems or bugs appear is possible to trace the problem. Figure 4.2 shows an
overview of a FELIX island with a schema of the deployed components and the status of its infrastructure.

4.7.2.3 Availability of Public Monitoring modules
Itis possible to monitor the availability of Public Monitoring by checking the HTTP, as it is provided through a web
server. Some monitoring tool such as Zabbix or other third-party web monitoring tool can be used for that.

4.8 AAA

The AAA services in FELIX are provided by the C-BAS module, which implements an extended version of Common
Federation API[17]. The user access to FELIX infrastructure is possible through three popular user-agents namely
OMNI [18], jFed [19] or Expedient [20]. The following subsections explain how the implemented features of C-BAS
have been validated.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 38

FELIX Components Validation Report

e 157.185.215.150:40804sland/EICT Q<r| B

Overview EICT Island

e

— other .
w— OFELIAand FELIX
Islands

—
i .

R Trana G man
s o y

r Cprent VPN eemnections awer
= pubdic Inlesriel (100 Mbes)
PP S i fmmmmm == i
1 CIDEﬂ vsxm switch | | isarver(nodel3)
| | ! [
! I ! I
: | 1GEE ! I
— |
1 o] " | 1 |
1 I ! I
! 1 ! 1
: HETWORHING | : VIRTUALISATION SERVER '
Infrasiructure
[Inwenizry of GpanFlaw v in S ke |
| Wannnitane I Ham [Weds | ramin o
Fronm = |5 | T

Figure 4.2: Hardware monitoring

4.8.1 Features validated
¢ Compliance with Common Federation API
e Correct internal behaviour per method
¢ Compatibility with OMNI
e Compatibility with jFed
¢ Integration with Expedient

¢ Availability of Clearinghouse module

4.8.1.1 Compliance with Common Federation API

C-BAS is fully compatible with the Common Federation API, purposed by GENI [21] and FIRE [22]. This makes
C-BAS a pluggable clearinghouse that can be accessed through popular user-agents, like OMNI, jFed and so on.
Moreover, compliance with the Common Federation API simplifies the task of federating FELIX islands with other
GENI/FIRE islands.

Table 4.4 gives an overview of few methods from Common Federation APls. In general there are four methods
(create, update, lookup and delete), which can be executed on five types of objects (slice, sliver info, project,
member and key) with the appropriate arguments.

In addition, C-BAS also supports slice/project member services through APl methods, which are listed in Table
4.5. Arguments within parenthesis are optional.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 39

FELIX Components Validation Report

92IAJI9S Jaquiaw 123foud/321|S 10} SPOYIBIA G {7 9|qel

sied s8uo|aq

3J0J/N¥N 123[go Jo ssieuondlp Jo 1si] NYN J2quiajy | Jaquiaw UaAId e ydiym 01 s193[qo ydueas | siaquiaw™ Joj dnyoo|
siied

3|0J/NYN Jaqwaw JO SsleuondIp Jo 1si] N¥N 13[00 B1I9114D UDAIS ulydlew S1aquiaw ydeas siaquiaw dnyoo|

109[qo uaAI3 03 303dsaJ ym 3|od

40

SUON | 9|0J JOqUIBIA ‘NYN J2qWBIA ‘NYN 193[qO | 419yl 28ueyd Jo siaquiaw SAOWL ‘ppy siaquiaw” Ajlpow
indinQ sjuawnguy uonduasag poyisN
T UOISIDA |V UOLIBISPIH UOWWO)) JO SPOYISIN 7't 9|gel
SUON al Asy -pamoj|e J0N- N¥N 123foid NYN JaAIS -pamoj|e J0N- 919[2Q
33(
-qo 8uiydlew yoea Joy aweu 1se1
siled anjea/p|ay yum uonddsaqg | 40 ‘Dweu 3s414 ‘jlewy N¥N S,91e32433y NYN
NY¥N 103[qo Aq paxap | 40 A3y 21qnd ‘@dAl | ‘sweusasn ‘Qin 439 paJidx3 Jo ‘Qin | ‘N¥N S,401e31) ‘NYN | 13loud Jo ‘pasidx]
-Ul salleuoldIp 4o 3sIT | ‘A1 ASY ‘NYN J9qWIBIAl | -WBIA ‘NYN JaqWd|Al | 303foid ‘NYN 33foad | dd1S ‘NN J9AIS | ‘QIN 1S ‘NYN 321|S dnyoo7
21ep
Andxs diyssaquiaw
JOo ‘sad9|IAld ‘uon alep ajep
dUON uondosaqg | -ewJoyul alqnd | Asidx3 Jo uondiiosaqg 91ep Andx3 | Andx3 4o uondiiasag 91epdn
(18P
uoneau)) ‘@1ep Aidx3
193(q0 Jo uoneasd (uon (s283)1A14d) ‘NYN $,91e32433y
3yl yum paneposse | -dudsaq) A9y dlignd | ‘(Asy HSS 2lignd) (uondudsaq) | ‘NYN sJoieal) ‘NiN (e1ep Auidx3)
splay jo Aseuonolg | ‘@dAl ‘NYN Jaqwialy | ‘uonewsojul dlgnd | o1ep Asdx3 SwepN | 921S ‘NYN J49AIS | (uonduasag) swen 91eal)
N JOqUIBIN 109l04d 0ju] JBAIIS 921|S
ndinQo poywN poyioN
syuawn8ly poyidn

FELIX (Grant Agr. No. 608638)

D4.1

Project:

Deliverable Number:

Date of Issue:

01/09/2015

FELIX Components Validation Report

4.8.1.2 Correct internal behaviour per method

Before executing any requested operation, C-BAS must perform a number of checks to validate the request. This
includes authentication and authorisation, sanity checks on passed argument values as well as scrutiny of ar-
guments to circumvent malicious actions. If any of the aforementioned checks fails, the method execution is
aborted and an error message is returned to the caller. Here follows a list of methods, along with the measures
taken before their execution.

e create: When creating an object, the identity of the caller and its privileges must be verified. Passed
arguments must be checked against the allowed and required arguments for the create method. After
this, a lookup must be performed to ensure that the requested object does not already exist in the system.
When creating a slice, reuse of a name is allowed only if the previous slice with the same name has expired.

e update: To authorise an update method call, the caller must be a member of the object with sufficient
privileges (e.g., member of a project) or the object must belong to the caller (e.g., SSH key of a member).
Only certain fields of an object can be updated after its creation, e.g., username of a member cannot be
modified. If the passed arguments are allowed to modify, a lookup must be performed to check if the
requested object exists, after which the actual update can be performed.

¢ lookup: Lookup call should not require any authorisation. This is because only public information about
the objects and members is stored at C-BAS. However, care must be taken that internal information of
C-BAS (like database IDs) must not reveal to the caller.

¢ delete: This method call must be supported only for sliver info, project and key objects. Slice objects must
not be deleted because there is no authoritative way to know if all slivers belonging to that slice have
been released. Similarly, system member objects cannot be removed: instead, their membership can be
suspended through certificate revocation process. An authentication and authorisation mean must be
provided by the caller to execute this method.

¢ modify_membership: This method is called to add/remove slice/project membership. In addition, a mem-
ber role can also be modified using this method call. When requesting member role modification, the caller
must provide credentials with sufficient privileges. Additional check must be performed to ensure that
method execution would not result in the removal of a member with LEAD role who is principal contact
for a slice/project.

¢ lookup_members, lookup_for_members: These lookup methods provide public information about the
memberships of slice and projects and can be called without providing any credentials. However, the
lookup must be performed with given match criterion and results must be filtered according to provided
filters.

4.8.1.3 Compatibility with OMNI

Among others APls, OMNI also supports the Common Federation API; which makes it compatible with the C-BAS
clearinghouse. Hence, by configuring some parameters such as the experimenter's certificate & key or the access
IP address & port number of C-BAS, the command line interface of OMNI can be used to interact with C-BAS, as
well as to setup and execute experiments in FELIX test-beds. This way, OMNI has also served as a testing tool for
C-BAS.

4.8.1.4 Compatibility with jFed
jFed is a GUI-based user agent developed within Fed4FIRE project. Like OMNI, jFed also supports the Common
Federation APl and therefore has full compatibility with C-BAS.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 41

FELIX Components Validation Report

4.8.1.5 Integration with Expedient

Expedient, a GUIl-based user agent inherited from FP7 OFELIA, has its own integral standalone clearinghouse. As
Expedient contained all authentication and authorisation procedures internally, it offers no interface to interact
with a external clearinghouse like C-BAS. Consequently, Expedient has been enhanced within FELIX to enable its
communication with C-BAS, as a substitute, external clearinghouse.

As a result, experimenters are facilitated with GUI-based front-ends, Expedient among them; while in the
back-end C-BAS methods are called by Expedient to fetch credentials, store/lookup objects like slice, project,
keys etc. When interacting with C-BAS, Expedient prints all debug information onto a dedicated log file that can
be checked in case of problems. Moreover, front-end of Expedient also displays user friendly error messages if a
user action results in an unexpected behaviour.

4.8.1.6 Availability of Clearinghouse module
C-BAS is a software module that provides access to its interface through a Python Flask Server. Being a standalone
component, it can be installed on any physical or virtual machine without introducing any particular hardware
constraints [23].

The availability of C-BAS access interface is monitored by Expedient and in case of unavailability, an error
message is displayed to the experimenters and the island administrator.
4.8.2 \Validation procedures
This section explains the validation procedures carried out to verify the correct behaviour of C-BAS.
4.8.2.1 Compliance with Common Federation API
The compliance check of C-BAS with the Common Federation API was performed through unit tests, which are

part of C-BAS repository. The unit testing runs approximately 200 tests to verify various aspects for compliance.
For example, it is checked whether:

¢ All mandatory functions have been implemented

¢ All implemented functions behave according to the API specifications

e Data type of passed method arguments are as expected

¢ Information of members, slices, slivers, and projects is correctly stored

e Appropriate error message is returned if a method is called with invalid or wrong number of arguments
¢ Returned values of all method calls are of correct data type and have expected values

¢ Proper authentication and authorisation is performed for operation requiring data modification
e Member roles and associated privileges are enforced when performing authorisation

¢ Privilege delegation works as expected

e C-BAS's internal or user private information is not revealed to the outside world

¢ Data integrity is maintained after operations involving database modification

e Access interface of C-BAS remains available despite any invalid method calls or internal errors

e CRLis maintained in up-to-date state

The units tests are run automatically for each commit to C-BAS repository through Travis Cl [24].

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 42

FELIX Components Validation Report

4.8.2.2 Correct internal behaviour per method
The correct internal behaviour has been mainly verified through the unit tests described above. In addition, we
manually checked C-BAS database tables and log files to perform a control on internal behaviour.

4.8.2.3 Integration with Expedient

The validation of Expedient's interface with C-BAS was mainly performed manually. We monitored Expedient
and C-BAS error log files and followed several cycles of creating a new member, downloading its certificate and
key from Expedient, using aforementioned information to log onto Expedient, creating project, creating slices,
accessing slice credential, adding or removing members to project, updating member SSH keys, updating project
and slice information, deleting project object. The successful execution of aforementioned tasks validated the
interface between C-BAS and Expedient.

4.8.2.4 Compatibility with OMNI

The compatibility of C-BAS with OMNI has been validated through unit tests. These automated tests instruct
OMNI to execute all those commands where clearinghouse is directly or indirectly involved. These commands
include:

e get ch_version

e Jistresources

* createslice

e getslicecred

* renewslice

e print_slice_expiration

e listslices

o listslivers

e listslicemembers

e Jistprojects

e listprojectmembers

e listmykeys

The unit tests also check response of these commands for consistency and report any encountered error.
4.8.2.5 Compatibility with jFed
The compatibility of C-BAS with jFed is mainly tested using the unit test that come shipped with jFed. These unit

tests, grouped into Slice Authority Tests and Member Authority Tests, execute a number of Common Federation
API calls and analyse return values. These tests include:

1. Slice Authority Tests

e getVersion
e getTestUserCredential
e getTestUserinfo

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015

43

FELIX Components Validation Report

retrieveCredentialSomehow
createProject
findProjectToUselnTests
lookupProjectsByNameNoFilter
createSlice
lookupProjectsByUrnNofFilter
updateProject
getSliceCredentials
lookupProjectsNoFilterAfterUpdate
lookupSlicesNoFilter

updateSlice
lookupProjectMembers
lookupSlicesNoFilterAfterUpdate
lookupProjectsForMember
lookupSliceMembers
modifyProjectMembership
lookupSlicesForMember
modifySliceMembership
lookupSliverinfoNoFilter

2. Member Authority Tests

getVersion

getTestUserCredential
retrieveCredentialSomehow
lookupMemberinfoEmptyFilter
lookupMemberinfoEmptyFilterWithMatchList
lookupMemberinfoNoFilterWithMatchList
lookupMemberinfoNoFilter
lookupPublicMemberinfoFiltered
lookupldentifyingMemberinfoFilteredWithMatchList
lookupPublicMemberinfoFilteredWithMatchList
lookupldentifyingMemberlnfoFiltered
createKey

lookupKeysNoFilter

updateKey

lookupKeysNofFilterAfterUpdate

deleteKey

lookupKeysNoFilterAfterDelete

Project:

Deliverable Number: D4.1

Date of Issue:

FELIX (Grant Agr. No. 608638)

01/09/2015

44

FELIX Components Validation Report

5 Validation Tools

Several tools have been used to validate the developed components. Some are used specifically for the validation
of the code or the functionalities while others are used for the deployment and allow the validation as another
feature.

5.1 OMNI

The main validation tool to test the functionalities of most of the modules has been OMNI. OMNI is a command
line user agent developed within GENI project which allows manually calling GENI commands to an AM and check
the received output. By analysing this output, the compliance of AM northbound APl with GENIv3 can be tested
to assure the correct communication with other modules and federated islands. These commands also allow
performing unit tests of each method of the module to check its internal behaviour correctness.

OMNI has been used to test all the modules that must be GENIv3 compatibles (RO, SDNRM, CRM, SERM,
TNRM and AAA).

5.2 jFed

jFed [19] is a new GUI tool lately introduced in the FELIX project and presented in [25]. Since jFed is the GUI that
experimenters will use to manage FELIX experiments, it has been used as a test tool. FELIX allows editing RSpecs
and check the results of running them through different logs and XML responses.

5.3 Public Monitoring

Similar to jFed, the public monitoring system is a tool to allow experimenters check the status of the AMs of
the different islands in order to know their availability for the experiment. Once validated that the tool works
correctly, the public monitoring system can be, and has been, used as a validation tool since it keeps performs
periodic connectivity and login tests and keeps logs of each test. These logs include for each method call its
request and response XML RSpecs, making it a very useful tool to check why an RM has failed.

5.4 Jenkins

Although not a validation tool per se, Jenkins [26] is an application that allows automating tasks. In FELIX, we have
used it as a Continuous Integration server to perform both automating deployment and validation procedures.
We have defined automated jobs to evaluate the code and perform some unit testing, and we are working on
others such as the automatic merging of different branches to integrate into the master one.

Figure 5.1 shows the main page of Jenkins, showing the public list of tasks with the last build status (pass/fail),
the last success and failure (whether the process succeeded or failed, Jenkins keeps a register of the last execu-
tion) and finally, the time required by it, which helps detecting stalled processes, either due to some incorrect
command or configuration, or a problem in a physical device.

After the Y2 review, the validation tasks were also added to Jenkins. For this, Jenkins was extended with the
Pylint plug-in in order to provide extra analysis to that of SonarQube (described below). Here, Pylint checks for
errors on the Python code, dead code (imports, unused variables, etc) or deviations from the standard style guide
(here, PEP8 [27] is used).

Thanks to its explicit location of the warning, it is easy to address problems. For instance, this is a warn-
ing line provided in the Jenkin's Console Output after an inspection on code used by RO: "/opt/felix/resource-
orchestrator/modules/resource/orchestrator/src/extensions/geni/pgch.py:31:[E] 'datetime’ imported but unused".
This error corresponds to third-party code, where a Python module is imported but not used. A great number of

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 45

FELIX Components Validation Report .

® Jenkins

Jenkins EnABLE AUTO REFRESH
& People Al visible jobs
. Al
= Build History
s w Name | Last Success Last Failure Last Duration
Build Queue = [+ iransit-network-violations 1/mo 18 days - #20 NiA 12560
No builds in the queue. g transit-network-sonar 1 mo 18 days - #43 3mo 4 days - #18 35sec
Build Executor Status = ,:} stitching-entity-violations 1mo 18 days - #21 N/A 4.6 sec
= master [*] stitching-entity-sonar 1/mo 18 days - #55 3mo 4 days - #20 51sec
1 Idle N
2 Idie @ resource-orchestralor-violations 1mo 18 days - #60 NA 57 sec
5, deployment (offline) d resource-orchestrator-test 10 mo- #117 9mo 1 day - #119 6 sec
J tesource-orchestrator-sonar 1/mo 18 days - 169 2mo 28 days - 4145 1 min 0 sec
g resource-manager-sdn-violations 1 mo 18 days - #19 NIA 53 sec
[*] resource-manager-sdn-sonar 10 mo - #4 1 min 16 sec
g resource-manager-computing-violations 1mo 18 days - #21 NA 8.1sec
tesource-manager-computing-test 1yramo-¢72 1yr4mo - £66 30 sec
[*] resource-manager-computing-sonar 1/mo 18 days - #34 2mo 28 days - #14 1 min 20 sec
[*] portal-violations 13 days - #19 NIA 8.8 sec
d QJ,; portal-test 10mo-#3 10mo-42 1.8 sec
[+] portal-sonar 13 days - #47 3mo 4 days - #21 1 min 23 sec
g monitoring-ip-violations 1 mo 18 days - #20 NIA 1880
Q monitoring-ip-sonar 1 mo 18 days - 446 3mo 4 days - #21. 44560
[*] monitoring-gu-violations 1/mo 18 days - #20 NA 0.96 sec
Q@ monitoring-eu-sonar 1/mo 18 days - #43 3mo 4 days - #18 36 sec
@ 4,},; git-merge 21mo 10 days - #16 21mo 10 days - #17 16sec
J 4days 6hr-#14 N/A 79sec
g aaa-cbas-sonar 4 days 6 hr - #19 NA 42 sec
lcon: SML
Legend [JRSSforall [RSS forfailures [) RSS for just latest builds
98, Helo us localize this page Page generaiod: Aug 31,2015 41127 PM RESTAPI Jankins ver. 1,616

Figure 5.1: Jenkins main page with list of tasks

Jenkins resource-orchestrator-violations ENABLE AUTO REFRESH
Back 1 Dashboard Project resource-orchestrator-violations
O, status
Performs a check on whether code complies to development standards, e.g. peps (pylint)
= Changes — A i
/A Violations zuem Changes 30 m
n
Build History trend = Upstream Projects ~ :]I \\
Q #60 o @ internal-git-pull-resource-orchestrator % w0 ’, _
@ #59 Julg, 2015 6:10 PM 30
@ #58 23, 2015 2:30 PM Permalinks = ,'
@ 57 3, 2015 1:58 PM - Last build (#60), 1 mo 18 days age " J »
g emmeen R e T TeEE¥vorEoEoRoR
@ #54 2015 9:08 PM
@ #53 2015 5:07 PM
@ #52 2015 3:53 PM
@ #51 2015 3:00 PM
@ #50 2015 2:42 PM
@ nag 2, 2015 2:36 PM
O #48 Jun 16, 2015 7:12 PM
@ #47 Jun 16, 2015 9:32 AM
O #46 Jun 15, 201 3 PM
O #45 Jun 12, 2015 1:11 PM
O #44 Jun 12, 2015 1:07 PM
O #43 Jun 10, 20 00 PM
9 42 0, 2015 4:56 PM
[“F.2i) 2015 12:31 PM
9 #40 2015 11:52 AM
o #39 2015 8:46 AM
@ #38 2015 8:45 AM
@ #37 2015 8:44 AM
@ #36 2015 8:42 AM
@ #385 2015 8:41 AM
RSS for all RSS for failures
8 Help us localize this page: Page generated: Aug 31,2015 41239 PM RESTAP| Jenkins ver. 1.616

Figure 5.2: Jenkins page for validation of RO code, using Pylint

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015

FELIX Components Validation Report

the violations reported by Pylint were addressed after Y2's review, as it can be observed in the chart on the right

side of Figure 5.2.

#® Jenkins

Jenkins resource-orchestrator-test

Back to Project

Status
"% Changes
B console Output
View as plain text
= View Build Information
Environment Variables
@ Previous Build

B Next Build

I Help us localize this page

#117

() Console Output

Started by upstream project 'internal-git-pull- " build number 88
originally caused by:

Started by GitHub push by rmonno

[Envinject] - Loading node environment variables.

Building remotely on deployment in workspace /var/lib/jenkins/workspace/resource-orchestrator-test

[resource-orchestrator-test] $ /bin/sh -xe /tmp/hudson3312572014868565665.sh
+ od fopt/felix
4 [! -d resource-orchestrator]
+ cd resource-orchestrator
+ git pull origin resource-orchestrator
From ssh://integration:7373/opt/felix/resource- crchcstrator
E_HEAI

* branch resource-orchestrator -> FETC
Updating 201lce7..b2e6bee
Fast-forwar.

22 ddbbiooo
38 A bbb
2 -

.../sre/delegate/geni /v3/db_manager .py
./src/delegate/geni/v3/delegate_v3.py
./geni/v3/rspecs/ro/advertisement_formatter.py

-/geni/v3/rspecs/ro/manifest_formatter.py e
-/geni/v3/rspecs/tnrm/manifest_formatter.py 14 dbbo
-/geni/v3/rspecs/tnrm/manifest_parser.py 42 bbb e
./geni/v3/rspecs/tnrm/request_formatter. FRpe—

7 files changed, 95 insertions(?), 43 deletions(-)

+ rescurce_orchestrator_root=/cpt/felix/resource-orchestrator/modules/resource/orchestrator/
+ cd fopt/Eelix/) modules,

+ sh deploy/install_dependencies.sh

Installing RO manageDB dependencies...

Reading package lists.

Building dependency tree...

Reading state information...

python-lxml is already the newest version.

python-m2crypto is already the newest version.

mongodb-server is already the newest version.

python-openssl is already the newest version.

python-dateutil is already the newest version.

python-pip is already the newest version.

xmlsecl is already the newest version.

0 upgraded, 0 newly installed, 0 to remove and 93 not upgraded.

Could not open requirements file: [Errmo 2] No such file or directory: 'pip_dependencies’
Storing complete log in /root/.pip/pip.log

Installing RO manageDB dependencies... Done

+ cd /opt/felix/ modules, Jcezt
+ ./copy_alice_credentials.sh

+ ./copy_server_certificate.sh

4 cd fopt/felix/resource-orchestrator/modules/resource/orchestrator/

4 cd deploy

+ sudo ./install.sh
Installing Resource Orchestrator...
Installing RO manageDB dCPcndcncu:_y. .

Reading state information...
python-lmml is already the newest version.

python-m2crypto is already the newest version.

mongodb-server is already the newest version.

python-openssl is already the newest version.

python-dateutil is already the newest version.

python-pip is already the newest version

smlsecl is already the newest version.

0 upgraded, 0 newly installed, 0 to remove and 93 not upgraded.

Requirement already satisfied (use --upgrade to upgrade): argparse in /usz/lib/python2.7 (frem -r pip dependencies (linme 1))

Requirenent already satisfied (use --upgrade to upgrade): pymongo in fusr/local/lib/pythonz.7/dist-packages (from -r pip_dependencies (Line 2))

rom —r pip_ (line 3))

Requirement already satisfied (use --upgrade to upgrade): python-datentil in /usr/lib/pythonZ. 7/dL5t-packaqcs (from -r pip_dependencies (line 4))

Requirement alveady satisfied (use --upgrade to upgrade): lxml in /usr/lib/python2.7/dist-packages (from -r pip_dependencies (line 5))

Requirement already satistied (use --upgrade to upgrade): blinker in fusr/local/lib/pythonz.?/dist-packages (from -r pip dependencies (Line §))
di

Requirement alveady satisfied (use --upgrade to upgrade): Flask-PyMongo in /usr/lecal/lib/python2.7/dis

Requirement alveady satisfied (use --upgrade to upgrade): f£lup in /usr/local/lil

Requirement already satisfied (use --upgrade to upgrade): Flask-XML-REC in /usr/local/lib/python?.7/dist

Requirement alveady satisfied (use --upgrade to upgrade): apscheduler in fusr/local/lib/python2.7/di
Requirement already satisfied (use --upgrade to upgrade): Flask>=0.8 in /usr/local/lib/python2.7/di

(line 3))

Requirement already satisfied (use --upgrade to upgrade): decorator>=3.4.0 in /usr/local/lib/python2.7/di:

(line 10))

Requirement already satisfied (use --upgrade to upgrade): six>=1.4.0 in /usr/local/lib/python2.7/dist-packages

11))

from -r pip_e s (Line 7))

(from -r pip_¢ (line 8))
Requirement alveady satisfied (use --upgrade to upgrade): unittest2 in /usr/local/lib/python2.7/dist-packages (frem -r pip_dependencies (line 9))
Requirement already satisfied (use --upgrade to upgrade): networkx in /usr/local/lib/python2.7/dist-packages (from -r pip_dependencies (line 10})

(from -r pip, ies (lime 11))

(from FL yMong pip,

(£xom

es

(from apscheduler->-r pip dependencies (line

Requirement alveady satisfied (use --upgrade to upgrade): pytz in /usr/local/lib/python2.7/dist-packages (from apschndu]cr —>-r pxp dcpnndcnc:\cs (Line 11))
(ror (1i

Requirement already satisfied (use --upgrade to upgrade): tzlocal in /usr/local/lib/python2.7/di
11))

Requirement already satisfied (use --upgrade to upgrade): futures in /usr/local/lib/python2.7/di
11))

ro>-r

(£rom er->-r pip_c s (line

Requirement already satisfied (use --upgrade to upgrade): Werkzeug>=0.7 in /usr/local/lib/python2.7/dist-packages (from Flask>=0.8->Flask-PyMongo->-1

pip_dependencies (line 3))

Requirement already satisfied (use --upgrade to upgrade): Jinja2>=2.4 in fusr/local/lib/python2.7/dist-packages (from Flask>=0.8->Flask-PyMongo->-r

pip_dependencies (line 3))

Requirement already satisfied (use --upgrade to upgrade): itsdangerous>=0.21 in /usr/local/lib/python2.7/dist-packages (from Flask>=0.B->Flask-PyMongo->-r

pip_dependencies (line 3))

Requirement already satisfied (use --upgrade to upgrade): markupsafe in /usr/local/lib/python2.7/dist-packages

>-r pip_dependencies (line 3))

Cleaning up.

Installing RO manageDs dependencies... Done
Installing Resource Orchestrator... Done

+ sudo /etc/init.d/felix-ro restart
Restarting FELIX Resource Orchestrator.

+ sleep 2

+ ed fopt/felix/: modules,

+ cd test/handler/geni/v3

+ python suite.py

Loat, __should_get_version_expected_keys (test_getversion.TestGetVersion) ... ok
test_should get_version_expected_type (test_getversion.TestGetVersion) ... ok

test_should_get_version_keys_expected_type (test_getversion.TestGetVersion)
test_should_get_version_keys_expected_value (test_getversion.TestGetVersion)

Ran 4 tests in 0.365s

ox
0

Sending e-mails to: carolina.fernandez@ileat.net
Finished: SUCCESS

(from Jinja2>=2.4->Flask>=0.8->Flask-PyMongo-

Pago generated: Aug 31,2016 4:13:28 PM REST AP|

Figure 5.3: Jenkins page of an early deployment and unit test on RO

Jonking ver. 1,616

Finally, we have also used Jenkins to perform automatic deployment after every new push to the shared
repository, and then to run unit tests. After some time, whoerver, we disabled this task, as the unit testing we
were performing was already carried out through other tools (Fed4FIRE's FLS monitor). In any case, Figure 5.3
shows an screenshot of an early deployment of the RO and one of the unit tests on its northbound API, which is
now performed in a different way.

Project:
Deliverable Number:
Date of Issue:

FELIX (Grant Agr. No. 608638)
D4.1
01/09/2015

47

FELIX Components Validation Report .

5.5 SonarQube

Though the main aim of the FELIX validation stages is on checking the validity of the functionalities, we have also
dedicated some effort on keeping the quality and simplicity on the code so as to minimise future errors due to
unexpected behaviour or difficulty of maintenance.

In this sense, SonarQube [28] is an open platform to keep an eye on the code quality (e.g., compliance to
standards, e.g. PEP8, and the code simplicity, or even its branch coverage). In FELIX, an instance of SonarQube
has been installed to check several aspects of code quality: complexity, duplications of lines, comments, coding
rules, etc.

sonarqube Dashboards» Issues Measures Rules Quelity Profiles Quality Gates More =
Home
PROJECTS PROJECTS
QG NAME ~ VERSION LOC TECHNICALDEBT LAST ANALYSIS
{5 C-BAS 01 331462 3d5h 27/Ago/2015
o = Computing Resource Manager 0.1 21465 A Th 58min 13/Jul/2015
11000 & = Menitoring System EU 0.1 2412 4h Smin 13/Jul/2015
;8‘388 1 ." (=} Monitoring System JP 01 3902 6h 40min 13/Jul/2015
g%ggg | = 1 = Portal 01 28971 3h 45min 18/Ago/2015
£ 6000 _ _
85000 = R {5 Resource Orchestrator 02 158732 7h 15min ‘u 13/Jul/2015
4,000 =N
%ggg (5 SDN Resource Manager 0.1 22946 2h 47min 13/Jul/2015
mﬂg T T F & {5} SE Resource Manager 02 12261 5h 13/Jul/2015
r T T T T T T T T T T T T J = TN Resource Manager 01 1222 Th 53min 13/Jul/2015
oM 12 13 14 15 18 17 18 19 20 21 2 023
Comments (%) 9 results
PROJECTS PROJECTS

Size: Comment lines Color: Comments (%) Size: Duplicated lines (%) Color: Duplicated lines (%)

Ex3 5 5 b bx] 5 b
Portal SE Resource Manager SDN Resource.. SDN Resourc.. | cB_ [po..
s = Monitoring System EU m :
Ex]
Resource Orchestrator | Computing Resource 5 Computing Re.

Figure 5.4: SonarQube main page

Through proper and manual configuration of each project (in this case, we have set up a project per FELIX
software module, though sometimes there may be more than one project per module), SonarQube can be trig-
gered to perform inspection on the FELIX source. The triggering is automatically performed through Jenkins,
upon code is committed. The main page of the tool, with graphical diagrams and charts on no. classes, issues or
the list of the available projects, can be seen in Figure 5.4.

After Y2 review, the list of projects in SonarQube was also increased, as well as the list of metrics to be shown
per project and the configuration per project was improved to only account for the code developed within the
FELIX project and draw a specific line for improvements. Thereafter, some of the reported issues have been
addressed either through the analysis performed by tasks in Jenkins or SonarQube. Figure 5.5 shows the project
page for the RO source code, featuring the number of issues and the estimated technical debt to solve them; an
analysis of the complexity per Python function, class and file; a percentage on the duplicated lines.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 48

FELIX Components Validation Report .

sonarqube || Dashboard Issues Measures Rules Quality Profiles Quality Gates More ~ (2]
& Resource Orchestrator Version 0.2/ July 13 2015 5:24 PM
Overview ~Components lssues More v
Main Dashboard Time changes... -
Lines Of Code Files Functions Debt Issues © Blocker 0
15873 A 149 1389 a 7h 15min 254 @ critical 0
oM 25
Python Directories Lines Classes Statements aer o
33 233322 226 12577 © Minor o
© Info 0
Comments
18.5% Most Violated Rules| Any severity . ore
Comment Lines © Functions should not be too complex 11—
36152 @ Files should not be too complex & I
@ Classes should not be too complex 6 I
Duplications . .
1.5% Directory Tangle Index Dependencies To Cut
. 0.0% Between Directories Between Files
Lines Blocks Files 0 0
343 20 1 Cycles
>0
Complexity 0
5,002 a o0
20
[Function /Class fFile N
36 221 3386 12468101200

@ Functions () Files

Events All v

Jul 132015 Version 02

May 202015 Version 01

May 292015 Quality Profile Changes in 'Sonar way (Python)

= Resource Orchestrator felixresourceorchestrator

Profiles: Sonar way (Python)

Sonar(ube™ technology is powered by SonarSource SA
Version 5.1 - LGPL v3 - Community - Documentation - Get Support - Plugins - Web Service API

Figure 5.5: SonarQube page with analysis on the RO source

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015

FELIX Components Validation Report

6 Conclusions and Summary

In order to provide a reliable set of components, the FELIX project has adopted a set of measures to deploy and
validate the functionalities and intercommunication of each component. Methodologies and tools help to this
task.

In this document we presented details on the status of the deployed FELIX components at the differentislands
or domains, and how their functionalities were successfully tested. Summing up, the main test for the different
Resource Managers was their compliance with GENIv3 and the correct internal behaviour. For these tasks, the
OMNI CLI and jFed (and, therefore also FAF-FLS) were the main tools used for both manual and automatic testing
via GENIv3 calls.

Finally, other interesting validation procedures that have been performed in parallel to development refer
to the assessment of the code quality, as it is an attempt to produce coherent, easy to debug and long-term
lasting code. The main validation tools used to integrate and check code quality were the open source tools
called Jenkins and SonarQube, which have been briefly described in the last sections of this document.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015 50

FELIX Components Validation Report

References

[1]
(2]
(3]
[4]

(5]

(6]
[7]
(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

“Ryu SDN framework." http://osrg.github.io/ryu/.

“'POX OpenFlow Controller." http://www.noxrepo.org/pox/about-pox/.

R. Krzywania, et al., “"FELIX Deliverable D2.2, General Architecture and Functional Blocks," tech. rep.
“GENI Aggregate Manager APl v3." http://groups.geni.net/geni/wiki/GAPI_AM_API_V3.

“"Fed4FIRE First-Level Support for FELIX testbeds."
http://flsmonitor.fed4fire.eu/fls.html?testbedcategory=felix.

R. Monno, et al., ""FELIX Deliverable D3.1, Resource Planning and Provisioning," tech. rep.
“FELIX Public Repository." https://github.com/ict-felix.
“MongoDB." https://www.mongodb.com/collateral/mongodb-30-whats-new.

“FELIX tests for SDNRM module." https://github.com/dana-i2cat/felix/tree/ocf/optin_manager/
src/python/openflow/optin_manager/geni/v3/tests.

“FELIX tests for CRM module." https://github.com/dana-i2cat/felix/tree/ocf/vt_manager/
src/python/vt_manager/communication/geni/v3/tests.

“GENI (Global Environment for Network Innovations) - website." http://www.geni.net.

“GENI Network Stitching - Overview." https://wiki.maxgigapop.net/twiki/pub/GENI/NetworkStitching/geni-
network-stitching-architecture-overview.pdf.

““eiSoil Framework." https://github.com/EICT/eiSoil.
C. Bermudo, et al., “"FELIX Deliverable D3.4, End User Tools and API," tech. rep.

T. Kudoh, et al., “Network services interface: An interface for requesting dynamic inter-datacenter net-
works," Optical Fiber Communication Conference (OFC), Mar. 2013.

T. Ikeda, et al., “"FELIX Deliverable D3.2, Slice Monitoring," tech. rep.

“*Common Federation APL." http://groups.geni.net/geni/wiki/ CommonFederationAPIv2, Nov. 2013.

“The Omni client." http://trac.gpolab.bbn.com/gcf/wiki/Omni, 2015.

“Java-based framework for testbed federation." http://jfed.iminds.be/, 2015.

J. Naous, et al., "Expedient: A centralized pluggable clearinghouse to manage geni experiments,' Jan. 2010.
“GENI: Global Environment for Network Innovations." http://www.geni.net.

“'Fed4FIRE Projects." http://www.fed4fire.eu/, 2015.

U. Toseef, et al., “Implementation of C-BAS: Certificate-based AAA for SDN Experimental Facilities," in Proc.
NCCA 2015, June 2015.

“Travis Cl: Continuous Integration and Deployment." https://travis-ci.org/EICT/C-BAS, 2015.

C. Fernandez, et al., ""FELIX Deliverable R2.1, FELIX Recommendation 1, year 2," FELIX Deliverable R2.1, Jul.
2015.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1

Date of Issue: 01/09/2015 51

FELIX Components Validation Report

[26] ““Jenkins." https://jenkins-ci.org/.
[27] “PEP 0008 -- Style Guide for Python Code." https://www.python.org/dev/peps/pep-0008/.

[28] ““SonarQube." http://www.sonarqube.org/.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D4.1
Date of Issue: 01/09/2015

FELIX Components Validation Report

urewop JNSd Ul paj|eisul S3|npow a1emyos :T'V 3|gelL

/8unonuow
Jwa1sAs
STOZ-ABIN-ET - - | -8uuojyuow 68 | SET'S9°9TT 0T T#l12Q dny SN
sToz-AeN-8 € luag |/g/1uag/>dijwix LY¥8 | GET'S9'9TT 0T T#12Q sdny NY3S
ST0C-AeIN-8 € luag |/g/1uagd/odujwix SP¥8 | S€T'S99TT 0T T#l190 sdny (WyD) 198euew 1A
ST0Z-AeIN-8 € luad |/g/1uad/odijwx EVY8 | SET'S99TT 0T T#lI2@ sdny | (WYNQs) uIido IN3D
STOZ-ABIN-8 € 1ua8 |/¢/1uagd/adijwx Obv8 | G€2°S9°9TZ° 0T T#l12d sdpy | 1033594210 924n0SdY
STOZ-AeIN-8 - - - 8008 | S€¢'S9'9T¢C 0T T#lI=A sdny (vvv) sva-d
ST0Z-ABIN-8 - - - 0008 | S€C'S9'9TC 0T T#lI=A sdny asnoy3uues)d
ST0Z-ABIN-8 - - - €vy | S€C'S9'9TC 0T T#lI=A sdny uaipadx3
98ueyd jseq UOISIaA INY adAy WV jutodpu3 1od dl 1SOH | |020304d

UIBWOP JONSd T'V

ze€=p!” 93ed; /na xia4-101'MMmMm//:d1y :ssalppe Suimol|o) syl 1e a|gejieae ‘utewop Jad ASojodoy ayi Jo saunidid yum paruswaldwod S| uorewdojul siy |

*a8ueyd 1se7 ay3 40 UoISIaA pue 3dAl (IAY)
J93euely 9132438y ay) se s|1e1ap Jay3o se ||am se (Jujodpus pue 140d ‘ssasppe) uonedo| si pue paiojdap syusuodwod aiemyos ay3 apnjoul a|qel ay3 ‘puelsi
Yoes 404 'SUlewop X|7134 JUaJayIp 9y} ssoJoe paio|dap sjnpow a1emyos X|134 AJI9AS 10} uoLeWIOU] SNIEIS PUE S[IB1SP |BIIUYIS] JaYling sopInoid uonaas Syl

puejs| J2d jJuswAo|daq yoels aiemyos :y xipuaddy

53

FELIX (Grant Agr. No. 608638)

D4.1

Project:

Deliverable Number:

Date of Issue:

01/09/2015

FELIX Components Validation Report

ulewop [yJg! Ul pajjeisul Sa|npow a1emyos 7'y 3|gelL

/8unionuow /waisAs 1ou1eagl

STOZ-ABN-TT - - -duloyuow | 8p¥8 | L9T'0V'88'¥8 | “XI|9yIuswAhojdap dny SN
18u1eoy!

STOZ-AeIN-TT € luag /€/1uadfodijwx | /py8 | L9T'0V'88'¥8 | XI|9yIuswAholdap sdny NEEN
na-el[a40

STOZ-ARN-9T € 1uag /€/tudd/adijwx | Spp8 | $'TT9TT 0T -£dy1edz1dxd sdny YD
na-el[a40

STOZ-AeIN-9T € luag /€/uadfodijwx | €py8 | ¥'ZT9TTOT -£dy1edgrdxa sdny WYNas
19U"1ed7I

STOZ-ABIN-9T € 1uag /€/1uagd/adajwx ovv8 | /9T°0v'88't8 ‘X194 3uswAo|dap sdny | 401e41s9Yd40 934n0SdY

19u°1ea7! (421seIN)

STOZ-ABIN-9T € 1uag /€/uad/adujwx | ovy8T | /9T 0’88 ¥8 ‘X194 3uswAo|dap sdny | 401eq1s9Yd40 924n0sdY
18u1eoy!

STOZ-uer-8z - - -| 8008 | L9T'0V'88¥8 | ‘XI|oyIuswAhojdap sdny (vvv) sva-d
19U"1ed7I

STOZ-AIN-9T - - - Evv | L9T'OV'88'V8 | X3y 3udawAholdap sdny ualpadx3

98ueyd ise uoisidn ANIY | 9dAy WV jlodpu3j Hod dl 1SOH |od0304d
ulewop 1vyd¢! ¢V

54

FELIX (Grant Agr. No. 608638)

D4.1

Project:

Deliverable Number:

Date of Issue:

01/09/2015

FELIX Components Validation Report

UIBWIOP SPUIAII Ul P3]|EISUl S9INPOW 2JeMYOS €'Y d|gel

es g spuiwi
- T | ussoloud |/adijwx/1usdoroud 69€CT 19e|l"Z|[eM MMM sdny asnhoysunea|)
0'g/we oqspulwil (WY3S+WYD)
- € lusd | /odJjwix/1usgdoloid 69€TT "19e|I'Z|[em MMM sdny | jlemienin
9q'uadn
- z 1ua3 ¢/1des/weoy 979€ 'sipuejje weoy sdny (wynas) Wvod
98ueyd iseq uolsidn WY | 9dAy NV jutodpu3 Hod dl 1SOH |020104d

ulewop SpuiNll - €'Y

55

FELIX (Grant Agr. No. 608638)

D4.1

Project:

Deliverable Number:

Date of Issue:

01/09/2015

FELIX Components Validation Report

ulewop [J[3 Ul paj|eIsul SS|NPoW 3JeMYoS 'Y d|gelL

na‘el|a4o

ssaJ3o.4d ul € usd | /g/iuad/adijwx LYY8 | S €CT 9T 0T -n&.vcm_m_m._a“m sdny WY3sS
nae||ajo

STOC-ARIN-9T € luagd | /g/1uasd/adijwix ShY8 | S'E€CT'ITZOT | -Ldypue|sia-dxd sdny YD
na-el|a0

STOZ-AeN-9T € 1uad | /g/luad/adijwx EVV8 | SECT'ITTOT | -Ldypuesiadx sdny INYNGS
nae||ajo

STOZ-JBeIN-8T € 1ua8 | /g/1uad/odijwx ovv8 | S'€CT'9TC 0T |-,dypuejsiadxa sdpy | 10313594210 924n0SdY
na-el|a0

GTOZ-BN-LT - - - 8008 | S'€TT'9TTOT |-Ldypuelsiordxd sdny (vvv) sva-d
nae||ajo

STOZ-AeN-9T - - - €y | SETTITTOT | -Ldypue|siordxs sdny uaIpadxy

98ueyd 1seq uolsidn WY | adAy WY jutodpu3 Mod dl 1SOH |o2010.4d

ulewop 1313 v’V

56

FELIX (Grant Agr. No. 608638)

D4.1

Project:

Deliverable Number:

Date of Issue:

01/09/2015

FELIX Components Validation Report

ulewop |aapy Ul paj|eisul sajnpow 2JeMyoS 1Sy dqeL

/8ulionuow /waisAs

PST1°8€°08T°¢0C

STOZ-dvY-¢T - - -duoyuow | gyYY /£°89°9TC°0T | dI'x-us['udp sw-xi|a} dny dr-sw
/8uiioyuow /waishs €ST°8€°08T°20¢ dfx
STOT-dy-vT - - -3uliojiuow | gyH8 /9°89°9TC°0T -U3[uop sww-xi|a} dny dr-SWIN
TST'8€°081°20C drx
ST0T-dy-TZ € 1ua3 /€/1uss/adijwx | /18 /58991701 -U3[*uop’Ippy-X1|34 sdny INY3S
TST'8€°081°20C drx
a|ge|ieAe J0u - - - - /S'89'91Z°0T -u3[uop 1ppy-x1|34 sdny YD
TST'8€°081°20C drx
ST0Z-dv-vT € 1uag /€/1uad/odijwx | €pp8 /5°89°9TC°0T -ugl-uop 1ppx-Xxi|a4 sdny INYNAS
TST'8€°081°20C dlx
STOZ-4AY-vT - 1uagd /€/1uad/adajwix ovv8 /S°'89°9TC°0T -u3[uap 1ppY-X1|94 sdny | 103e4159YduQ 924n0SY
TST'8€°081°20C drx
STOZ-dy-vT - - - 1374% /S°89°91Z°0T -u3["uop1ppy-x1|34 sdny juaipadx3
98ueyd iseq uolsidn WY | 2dA NV juiodpug Mod dl 1SOH |o2010.4d

urewop |[daj s’

v

57

FELIX (Grant Agr. No. 608638)

D4.1

Project:

Deliverable Number:

Date of Issue:

01/09/2015

FELIX Components Validation Report

T "OU pue|S] 1SV Ul P3|eISul SI|NPOW 3Jemyos :9°y d|qel

/3unionuow /waisAs

6€T°0€°0CC el

GTOZ-AeN-ST - - -guliojuow 8vv8 /6€1'69°9TC 0T dny dr-sw
8¥T°0€°02T €91

STOZ-AeIN-ST € luag /€/1ua3/adajwx VA4% /v¥T69°9TT 0T sdny INY3S
LYT'0€°02T°€9T

STOZ-AeN-ST € luag 70dYy 10 dUoN 9v¥8 /€VT69°9TT 0T sdny NYNL
LET'0€°02T €91

STOZ-AeIN-ST € luag /€/1ua3/adajwx S8 /LET'69°9TT 0T sdny INYD-INAN
8¥1°0€°02T €97

ST0Z-AeIN-ST € 1uag /€/1uad/adajwx 1374743 /Y¥T69°9TT 0T sdny INYNQS
LET'0€°02T €91

ST0Z-ABIN-ST € Iuag /€/1uasd/adujwx (0)7a74°] /LET'69°9TT 0T sdny | 101e41$9YduQ 924n0SAY
TYT0€°02T €91 (49352N)

STOZ-AINI-TE € luag /€/1ua8/adJjwx ov¥8T /T¥1°69°9TC 0T sdny | 103e43S3Y2I0Q 321N0SAY

98ueyd iseq UoISIdA NIV | 9dA) NV julodpu3 Mod dl |020104d

T 'ou puejs| T'9'VY

ulewop 1SIv 9V

58

FELIX (Grant Agr. No. 608638)

D4.1

Project:

Deliverable Number:

Date of Issue:

01/09/2015

FELIX Components Validation Report

7 "OU pue|s] 1Sy Ul pP3||eISul S9|NPOW aJemyos /"y d|qel

/3unionuow /wa1sAs

- - - -Sunioyuow 8vv8 - dny dr-sw
v¥T°0€°0CT €91
STOZ-AIN-1€ € 1uag /€/1ua8/adajwix LY¥8 /¥¥1°0L9TT 0T sdny INY3S
8€T'0€°02T°€9T
ST0Z-AINr-T€ € 1uag /€/1ua3/adajwix S8 /8€T°0£°9TT 0T sdny INYD-INAN
¥¥T°0€°0CT €91
STOZ-AIN-1€ € 1uag /€/1ua8/adajwx 37473 /¥¥T°0L9TT 0T sdny INYNQS
8€T'0€°02T€9T
STOZ-AINI-TE € 1ua3 /€/1ua8/adJjwx ovv8 /8€T°0L9TT 0T sdny | J03es3sayduQ 24nosay
98ueyd iseq uolsidA WY | @dA) NV jutodpug Mod di |o20104d

z-oupuels| Z'9'VY

The scientific/academic work is financed from financial resources for science in the years 2013 - 2016 granted for the realization of the international project

co-financed by Polish Ministry of Science and Higher Education.

59

FELIX (Grant Agr. No. 608638)

D4.1

Project:

Deliverable Number:

Date of Issue:

01/09/2015

user
Tekst maszynowy
The scientific/academic work is financed from financial resources for science in the years 2013 - 2016 granted for the realization of the international project
co-financed by Polish Ministry of Science and Higher Education.

	Abstract
	Excecutive Summary
	Introduction
	Abbreviations and Definitions
	Abbreviations
	Definitions

	Deployment of Components
	Resource Orchestrator
	SDNRM
	CRM
	SERM
	TNRM
	Monitoring System
	Public Monitoring
	AAA

	Testing of Functionalities per Component
	Resource Orchestrator
	Features validated
	Validation procedures

	Software-Defined Networking Resource Manager
	Features validated
	Validation procedures

	Computing Resource Manager
	Features validated
	Validation procedures

	Stitching Entity Resource Manager
	Features validated
	Validation procedures

	Transit Network Resource Manager
	Features validated
	Validation procedures

	Monitoring System
	Features validated
	Validation procedures

	Public Monitoring
	Features validated
	Validation procedures

	AAA
	Features validated
	Validation procedures

	Validation Tools
	OMNI
	jFed
	Public Monitoring
	Jenkins
	SonarQube

	Conclusions and Summary
	References
	Appendix A: Software Stack Deployment per Island
	PSNC domain
	i2CAT domain
	iMinds domain
	EICT domain
	KDDI domain
	AIST domain
	Island no. 1
	Island no. 2

