
FEDERATED TEST-BEDS FOR LARGE-SCALE INFRASTRUCTURE EXPERIMENTS
FELIX EU-JP

CollaboraƟve joint research project co-funded by the European Commission (EU)and NaƟonal InsƟtute of
InformaƟon and CommunicaƟons Technology (NICT) (Japan)

Grant agreement no: 608638
Project acronym: FELIX
Project full Ɵtle: "Federated Test-beds for Large-scale Infrastructure eXperiments"
Project start date: 01/04/13
Project duraƟon: 36 months

Deliverable D3.1
Resource Planning and Provisioning

Version 1.0

Due date: 31/11/2014
Submission date: 30/01/2015
Deliverable leader: i2CAT
Author list: RobertoMonno (NXW), Gino Carrozzo (NXW), Paolo Cruschelli (NXW), Carolina

Fernandez (i2CAT), Carlos Bermudo (i2CAT), Kostas PenƟkousis (EICT), Umar
Toseef (EICT)

DisseminaƟon level

X� PU: Public
� PP: Restricted to other programme parƟcipants (including the Commission Services)
� RE: Restricted to a group specified by the consorƟum (including the Commission Services)
� CO: ConfidenƟal, only for members of the consorƟum (including the Commission Services)

Resource Planning and Provisioning

<THIS PAGE IS INTENTIONALLY LEFT BLANK>

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 2

Table of Contents
Abstract 6

ExcecuƟve Summary 7

1 IntroducƟon 8

2 DefiniƟons 10
2.1 AbbreviaƟons . 10
2.2 DefiniƟons . 10

3 ImplementaƟon Details 12
3.1 Resource Orchestrator . 12

3.1.1 Design . 12
3.1.2 Workflows . 16
3.1.3 Future Work . 18

3.2 CompuƟng Resource Manager . 20
3.2.1 Design . 20
3.2.2 Workflows . 23
3.2.3 Future Work . 25

3.3 SoŌware-Defined Networking Resource Manager . 25
3.3.1 Design . 25
3.3.2 Workflows . 27
3.3.3 Future Work . 30

4 Deployment 31
4.1 Resource Orchestrator . 31

4.1.1 Requirements and Dependencies . 31
4.1.2 ConfiguraƟon and InstallaƟon . 32

4.2 CompuƟng Resource Manager . 34
4.2.1 Requirements and Dependencies . 35
4.2.2 ConfiguraƟon and InstallaƟon . 35
4.2.3 OperaƟon . 38

4.3 SoŌware-Defined Networking Resource Manager . 39
4.3.1 Requirements and Dependencies . 39
4.3.2 ConfiguraƟon and InstallaƟon . 40
4.3.3 OperaƟon . 42

5 Conclusions and Summary 44

References 45

3

List of Figures
Figure 1.1 Hierarchical Resource Orchestrator in FELIX . 9
Figure 3.1 RO Design Model . 13
Figure 3.2 RO list-resources workflow . 17
Figure 3.3 RO allocate workflow . 18
Figure 3.4 RO provisioning workflow . 19
Figure 3.5 RO delete workflow . 19
Figure 3.6 Components of the FELIX C-RM . 21
Figure 3.7 C-RM - RequesƟng a Virtual Machine . 23
Figure 3.8 C-RM - DeleƟng a Virtual Machine . 24
Figure 3.9 SDN-RM - RequesƟng a FlowSpace . 28
Figure 3.10 VLAN manager workflow . 29
Figure 3.11 SDN-RM - DeleƟng a FlowSpace . 29

4

List of Tables
Table 4.1 RO General Parameters . 32
Table 4.2 RO Server Parameters . 33
Table 4.3 RO GENIv3 Parameters . 33
Table 4.4 RO Logging Parameters . 33
Table 4.5 C-RM General Parameters . 36
Table 4.6 C-RM Root Account Parameters . 36
Table 4.7 C-RM Database Parameters . 36
Table 4.8 SDN-RM General Parameters . 40
Table 4.9 SDN-RM Root Account Parameters . 40
Table 4.10 SDN-RM Database Parameters . 41

5

Resource Planning and Provisioning

Abstract
This document presents a detailed overview of the soŌware modules used for planning and provisioning the
assignaƟon of heterogeneous resources in the FELIX Federated Framework, such as seƫng up the intra- and
inter-domain networking or managing compuƟng nodes. An overview of the design and implementaƟon for
the Resource Orchestrator, CompuƟng Resource Manager and SoŌware-Defined Networking Resource Manager
modules is given; as well as explaining their key internal and inter-communicaƟon workflows.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 6

Resource Planning and Provisioning

ExcecuƟve Summary
Deliverable D3.1 aims to explain, from a high-level perspecƟve, the most important concepts and choices made
for the design, implementaƟon and deployment of the modules involved in the FELIX resource planning and pro-
visioning. The Resource Orchestrator (RO) is introduced as the resource planner and request proxy; the Comput-
ing Resource Manager (C-RM) provisions compuƟng resources and the SoŌware-Defined Networking Resource
Manager (SDN-RM)manages OpenFlow-based networking resources.

This document covers also the management of compuƟng and intra-domain networking resources, whilst
FELIX D3.3 [1] describes in detail the soŌware components that manage the dynamic inter-domain network con-
necƟvity and its sƟtching with the intra-domain connecƟvity. The informaƟon presented in this document con-
tains the latest addiƟons, yet it is subject to future extension or modificaƟon derived from the integraƟon tests
and the FELIX Use Cases preparaƟon scheduled for Y3.

We introduce first some concepts and definiƟons common to the Resource Orchestrator and the two Re-
sourceManagers explained in this deliverable. Wemove aŌerwards to explaining the parƟculariƟes of the design
and the key internal funcƟonaliƟes, as well as the workflows intended for each module and also its communica-
Ɵon with related components. We get into higher detail in the deployment secƟon, where we present succinct
guides for the configuraƟon and deployment processes, along with the common operaƟon usage.

This document is addressed to soŌware architects, soŌware and network engineers, soŌware developers
implemenƟng specific features of the resource orchestraƟon and provision, as well as system administrators.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 7

Resource Planning and Provisioning

1 IntroducƟon
One of the key features of the FELIX Framework with respect to the provisioning andmonitoring funcƟonaliƟes is
the introducƟon of a new layer on top of the technology-specific Resource Managers (the modules ulƟmately in
charge of provisioning virtual resources from their physical infrastructure) to cover the funcƟonaliƟes of examin-
ing and steering the incoming requests to the most fiƩed Resource Manager, as well as aggregaƟng informaƟon
of such requests to transmit to another modules available in the upper layers, such as the Monitoring System.

This upper layer contains the Resource Orchestrator tool, whose main funcƟons are the following:

• MediaƟng between the user and the Resource Managers.

• Enforcing the correct workflow followed by the user requests.

• IdenƟfying the appropriate desƟnaƟon to proxy requests from users.

• Maintaining a high-level, cross-island topological view.

• AggregaƟng high-level informaƟon for the status of the physical infrastructure and the virtual resources.

The Resource Orchestrator, located on top of the ResourceManagers, acts as the entry point for each domain
and aƩends requests from the users. To this maƩer, the RO provides the GENI [2] API, widely adopted for testbed
federaƟon. The user is then able to communicate against the RO by using a proper client -- for instance the GENI
command-line client, OMNI [3].

Upon a request arrival, the RO must ensure that the operaƟon requested by the experimenter complies to
the proper workflow, that is, that the sequence of acƟons to be invoked is correct. If that is not achieved, the user
is noƟfied of the error condiƟon. AŌer validaƟng the workflow, this module examines the request to idenƟfy the
different types of resources the experimenter is able to request. The request is consequently divided into a set
of requests, each according to the type of the resource idenƟfied. For each of these requests, the RO performs
an internal search to idenƟfy the Resource Manager that is able to fulfill the request. In the iniƟal stages of the
development, the request is either fulfilled locally or, when that is not possible, the user is informed back of the
error. Future phases of development are expected to deal with the implementaƟon of an intelligent provisioning
schema that evaluates a set of metrics (such as internal policies set by the administrator and/or the status of each
domain retrieved from aggregated informaƟon in upper levels) and steers requests to Resource Orchestrator in
other domains, if need be.

As a part of the mediaƟng procedure, the Resource Orchestrator fetches informaƟon from the requests re-
ceived from the user on the top layer and also from the output (ormanifest) returned by the Resource Managers
in the boƩom layer. Such informaƟon comprises the physical topology (the physical infrastructure, such as servers
or switches) and the slice topology (that is, a subset of those resources that were requested by a user for a given
slice). This is useful for maintaining and showing a cross-island view, both for the physical topology and for the
contents requested per slice and domain. This informaƟon is passed from the RO to the the Monitoring Service
module in two ways: the physical topology is periodically pushed, whilst the slice topology is sent as response
to a small set of events (e.g. when a resource is effecƟvely provisioned or when it is deleted). The Monitoring
System, documented in documented in FELIX D3.2 [4], contains a component to graphically show this monitoring
data.

The data persisted in the RO for monitoring must be aggregated in order to compile a high-level view. The
Master Resource Orchestrator (MRO) is another instance of the RO located in the upper layer of the FELIX Frame-
work and acts as an entry point for a given federaƟon (e.g. a conƟnent), effecƟvely following a hierarchical ar-
chitecture per group of islands. This is depicted in Figure 1.1. The MRO is capable of aggregaƟng the monitoring
informaƟon, previously compiled by the ROs in the lower layer, so it is able to make decisions regarding different
islands or to communicate the inter-domain topology and slice informaƟon to the Master Monitoring System
(MMS).

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 8

Resource Planning and Provisioning

Figure 1.1: Hierarchical Resource Orchestrator in FELIX

Every request is ulƟmately served by the underlying ResourceManagers (RMs), the soŌware modules placed
in the lower layers of the architecture and consequently more closely to the hardware that conforms the physical
infrastructure. Each RM is able to provision a different kind of resource and this operaƟon is typically performed
by offering a virtual instance on top of their physical infrastructure, in a non-exclusive way. In the FELIX Frame-
work, the request performed by the experimenter may consist of compuƟng resources (CompuƟng Resource
Manager) or Inter-Domain connecƟvity, either through SoŌware-Defined networks (SDN Resource Manager) or
through NSI [5] protocol (managed by the Transit Network Resource Manager and helped by the SƟtching EnƟty
ResourceManager). In this document we focus on the compuƟng and SDN resources and describe its design, im-
plementaƟon and operaƟonal procedures, as well as their communicaƟon with the Resource Orchestrator and
other modules.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 9

Resource Planning and Provisioning

2 DefiniƟons
Throughout this document we use specific notaƟon and acronyms that are explained here. Please refer to this
guide to idenƟfy the concept or for a more detailed explanaƟon.

2.1 AbbreviaƟons
• GENI: Global Environment for Network InnovaƟons.

• GUI: Graphical User Interface.

• MMS: Master Monitoring System.

• MRO: Master Resource Orchestrator.

• MS: Monitoring System.

• OFVER: OFELIA VERsioning system.

• PE: Policy Engine.

• pyPElib: python Policy Engine library.

• RM: Resource Manager.

• RO: Resource Orchestrator.

• RSpec: Resource SpecificaƟon.

• URN: Uniform Resource Name.

• VM: Virtual Machine.

2.2 DefiniƟons
• Agent: Refers to the virtualisaƟon server. This is the soŌware running in each virtualisaƟon server and

acƟng as the entry point to the hypervisor that allows to manage the virtual machines of the users.

• FlowSpace: Set of rules to define operaƟons on packets. Contains a variable number of datapath IDs and
their selected ports, a filtering condiƟon to match the packets (usually a VLAN or a range of them). This
conforms an internal data model of the FlowVisor that is later on inserted on the switches.

• GENI: Provides a virtual laboratory for networking and distributed systems research and educaƟon, as well
as fostering standardizaƟon and making the SFA interfaces advance.

• Island: Physical domain under parƟcular management. It provides infrastructure and resources to the end
user.

• OFVER: Versioning system that consists of a number of core scripts to manage the install and update pro-
cesses, and allows extension through custom scripts.

• OMNI: CLI tool which is part of the GENI Control Framework.

• pyPElib: Policy Engine library developed in Python. It aims to help programmers using the abstracƟons
provided to apply rule-based policy enforcement.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 10

Resource Planning and Provisioning

• RM: SoŌware component able to reserve, create, manage and delete resources by communicaƟng with
the hardware. It provides interfaces for both administraƟve and common operaƟons on resources.

• RSpec: XML document following agreed schemas to represent resources that are understood by Resource
and Aggregate Managers.

• URN: Public idenƟfiers given to resources in the network in order to uniquely idenƟfy and exhausƟvely
describe the properƟes of the resource. For that, the urn scheme is followed.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 11

Resource Planning and Provisioning

3 ImplementaƟon Details
Based on the general FELIX architecture defined in deliverable D2.2 [6], the project team has progressed with
the more detailed design and implementaƟon of the idenƟfied modules. In this secƟon we explain the most
relevant implementaƟon aspects of the modules that are related to the provisioning procedure, and parƟcularly
the Resource Orchestrator and the Resource Managers C-RM and SDN-RM, respecƟvely based on the OFELIA
VTAM and OFAM [7].

The Resource Orchestrator is in charge of the part of the resource planning, as it interprets incoming requests
and steers porƟons of it to the appropriate Resource Manager, from the pool of RMs available on its same island.
Upon receiving the corresponding request, the C-RM fulfils the part of the request related to the virtualisaƟon
and the SDN-RM manages the part related to SDN connecƟvity.

We explain in the next secƟons the design of each of thesemodules, their workflow and communicaƟonwith
other modules, as well as the acƟons to take in the future.

3.1 Resource Orchestrator
The Resource Orchestrator (RO) module has been developed from scratch to fulfil the FELIX requirements, which
have been documented in the FELIX D2.2 deliverable.

We recall the major key funcƟonaliƟes that the RO needs to provide as follows:

• Manage different kind of resources (compuƟng, networking, etc) and allow data access policies, for in-
stance through the AAA system (user's idenƟty and permissions) or through domain specific restricƟons.

• Mediate between the user/experimenter and the technology-specific Resource Managers (RMs) in order
to reserve, provision, monitor, release and operate on both resources and slices.

• Maintain a high-level and cross-island topological view (updated by the underlying RMs) for beƩer decision
making.

• Manage end-to-end services spawned on the federated testbed and coordinate the correct sequence of
acƟons to instanƟate the service.

• Interact with the Monitoring System to provide measurements, staƟsƟcs and resources provisioned per
slice, as well as to provide such System with the overview of the physical topology.

The following secƟons describe the technical design of the RO, which has been inspired by the previous
requirements. In addiƟon, we present some internal workflows that explain how the basic operaƟons are per-
formed inside this module and also document in a simple manner the interacƟon between the RO and other
modules from the FELIX project that are related to it.

3.1.1 Design

The Resource Orchestrator module is structured as a number of components or building blocks. This is so in
order to keep a maintainable and extensible structure (i.e. through means of plug-ins). Figure 3.1 shows a brief
high-level overview of RO's design model, which has been followed during the development process.

3.1.1.1 Building blocks
The different building blocks are logically interconnected to provide the required funcƟonaliƟes introduced pre-
viously. From a high level perspecƟve, the RO module consists of three main layers:

North-bound Interfaces

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 12

Resource Planning and Provisioning

Figure 3.1: RO Design Model

The top layer consists of components that manage the external north-bound interfaces of the RO. That is,
the GENIv3 interface that provides methods for the resources provisioning and its custom API that has been
developed to allow the configuraƟon of the internal components.

• GENIv3 Handler: receives the (XML) message, translates the message body and builds the proper method
signature. Then, it calls the GENIv3 Delegate to execute the command and converts the results into the
(XML) message to be send back to the caller.

• Config Handler: manages the configuraƟon messages and invokes the ConfiguraƟon Manager with the
incoming parameters.

Core Components
The middle layer is the main framework which is in charge of e.g. manage the user requests, store the dis-

covered physical topology or generate events for resources realignment, etc.

• GENIv3 Delegate: executes the GENIv3methods retrieving data from the database, calling the RMplug-ins,
aggregaƟng the results, etc. In brief, this is the real core of the RO.

• Events Dispatcher: collects the events generated by the other components and then schedules the execu-
Ɵon through the proper plug-in.

• ConfiguraƟon Manager: configures the internal components and (just in case) stores the data into the
database (e.g. intra-island RMs configuraƟon details).

• DB Manager: provides a wrapper to the MongoDB [8] API and introduces dedicated filters for the FELIX
resources.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 13

Resource Planning and Provisioning

Plug-ins
The boƩom layer consists of some plug-ins which take care of the communicaƟon with the corresponding

Resource Managers.

• C-RM plug-in: interacts with the CompuƟng Resource Manager.

• SDN-RM plug-in: interacts with the SDN Resource Manager.

• SE-RM plug-in: interacts with the SƟtching EnƟty Resource Manager.

• TN-RM plug-in: interacts with the Transport Network Resource Manager.

• MS plug-in: interacts with the Monitoring System.

• Remote RO plug-in: interacts with the Remote Resource Orchestrator to implement the top-down hierar-
chical (management) approach.

3.1.1.2 Exposed interfaces
The RO module exposes a GENIv3 [9] compliant interface which can be used by the user applicaƟons (e.g. the
FELIX-GUI) to allocate, configure, describe or release resources into the federated test-bed. It also provides a
custom API used for configuraƟon purposes.

GENIv3 API
Each incoming GENIv3 request is received by the GENIv3 Handler and then forwarded to the GENIv3 Dele-

gate. This component performs all the authenƟcaƟon and authorizaƟon checks and then validates the received
RSpec with a proper schema. Depending on the input parameters, the delegate chooses the correct plug-in (or
plug-ins) that should serve the request and translates the context to be executed into the underlying layer. In
addiƟon, the delegate can store data into the Resource DB simply calling a dedicated DB Manager object which
can be considered as a DB abstracƟon layer.

We have several plug-ins to interact with different Resource Managers. Basically, there is a 1:1 mapping
between the RMand the corresponding plug-in. Thismechanismallows us to isolate the specific RMmanagement
logic inside the plug-in and to offer a common and generalized interface to the upper layer. The methods offered
by this API are as follows:

• GetVersion: return basic informaƟon of the RO, such as the format of the supported RSpecs.

• ListResources: retrieve descripƟon of the available resources that are managed by the RO.

• Allocate: perform a reservaƟon request of a set of any kind of resources managed by the RO. Each request
follows the specificaƟon expected for the RO aƩending the request (see each RM for details on the data
structure).

• Provision: steer the provisioning request to each RM aƩending the resources that were previously re-
served.

• Status: check status of the current reservaƟon.

• PerformOperaƟonalAcƟon: given the idenƟfier of a resource, this method performs a start, stop or restart
operaƟon on it by contacƟng the appropriate RM.

• Renew: extend expiraƟon Ɵme for the given resource(s). This can also be used to extend the reservaƟon
Ɵme for resources previously provisioned.

• Delete: deletes the resource(s) idenƟfied by the URN [10]. Both allocated and provisioned resources are
affected by this.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 14

Resource Planning and Provisioning

RSpecs
Here belowwe provide an example of a request RSpec that can be used to perform an AllocaƟon operaƟon on

specified SDN and TN resources. A detailed descripƟon on the contents expected for each of the aforemenƟoned
resources can be found in the SDN-RM secƟon of this document and in the TN-RM secƟon in D3.3 [1], respecƟvely.
The proposed RSpec can be considered as an aggregate of the compuƟng, SDN and transport network resources
that the user can choose to create a virtual slice into the provided large-scale environment. It is worth noƟng that
the experimenter's request will induce the RO to automaƟcally select the SƟtching EnƟty resources to create a
virtual link between the SDN datapaths (intra-island) and TN nodes (inter-island).

<?xml version="1.0" encoding="UTF-8"?>
<rspec xmlns="http://www.geni.net/resources/rspec/3"

xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
xmlns:openflow="http://www.geni.net/resources/rspec/ext/openflow/3"
xmlns:sharedvlan="http://www.geni.net/resources/rspec/ext/shared-vlan/1"
xs:schemaLocation="http://www.geni.net/resources/rspec/3/request.xsd

http://www.geni.net/resources/rspec/ext/openflow/3/of-resv.xsd"
type="request">

<openflow:sliver email="a@b.com" description="OF request example">
<openflow:controller url="tcp:10.216.12.134:6633" type="primary"/>
<openflow:group name="fs1">

<openflow:datapath
component_id="urn:publicid:IDN+openflow:i2cat+00:10:00:00:00:00:00:01"
component_manager_id="urn:publicid:IDN+openflow:i2cat.ofam+cm"
dpid="00:10:00:00:00:00:00:01">

<openflow:port name="GBE0/3" num="3"/>
<openflow:port name="GBE0/12" num="12"/>

</openflow:datapath>
<openflow:datapath

component_id="urn:publicid:IDN+openflow:i2cat+00:10:00:00:00:00:00:03"
component_manager_id="urn:publicid:IDN+openflow:i2cat.ofam+cm"
dpid="00:10:00:00:00:00:00:03">

<openflow:port name="GBE0/1" num="1"/>
<openflow:port name="GBE0/12" num="12"/>

</openflow:datapath>
</openflow:group>
<openflow:match>

<openflow:use-group name="fs1" />
<openflow:packet>

<openflow:dl_vlan value="18" />
</openflow:packet>

</openflow:match>
<openflow:match>

<openflow:datapath
component_id="urn:publicid:IDN+openflow:i2cat+00:10:00:00:00:00:00:05"
component_manager_id="urn:publicid:IDN+openflow:i2cat.ofam+cm"
dpid="00:10:00:00:00:00:00:05">

<openflow:port name="GBE0/7" num="7"/>
<openflow:port name="GBE0/8" num="8"/>

</openflow:datapath>
<openflow:datapath

component_id="urn:publicid:IDN+openflow:i2cat+00:10:00:00:00:00:00:02"
component_manager_id="urn:publicid:IDN+openflow:i2cat.ofam+cm"
dpid="00:10:00:00:00:00:00:02">

<openflow:port name="GBE0/4" num="4"/>
<openflow:port name="GBE0/15" num="15"/>

</openflow:datapath>
<openflow:packet>

<openflow:dl_vlan value="1234" />
</openflow:packet>

</openflow:match>
</openflow:sliver>
<node client_id="urn:publicid:tn-network1"

component_manager_id="urn:publicid:IDN+NSI+authority+TN-RM">
<interface client_id="urn:publicid:tn:aist:network1+urn:ogf:network:aist:network1:stp1">

<sharedvlan:link_shared_vlan
name="urn:publicid:tn:aist:network1+urn:ogf:network:aist:network1:stp1+vlan"
vlantag="1980-1989"/>

</interface>
<interface client_id="urn:ogf:network:xxx:stp1"/>
<interface client_id="urn:ogf:network:yyy:stp2"/>

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 15

Resource Planning and Provisioning

<interface client_id="urn:publicid:tn-network1+urn:felix:i2cat-stp2">
<sharedvlan:link_shared_vlan

name="urn:publicid:tn-network1+urn:felix:i2cat-stp2+vlan"
vlantag="1980-1989"/>

</interface>
</node>
<link client_id="urn:publicid:tn-network1:link">

<component_manager name="urn:publicid:IDN+NSI+authority+TN-RM"/>
<interface_ref

client_id="urn:publicid:tn:aist:network1+urn:ogf:network:aist:network1:stp1"/>
<interface_ref client_id="urn:ogf:network:xxx:stp1"/>
<interface_ref client_id="urn:ogf:network:yyy:stp2"/>
<interface_ref

client_id="urn:publicid:tn-network1+urn:felix:i2cat-stp2"/>
<property source_id="urn:publicid:tn:aist:network1+urn:ogf:network:aist:network1:stp1"

dest_id="urn:publicid:tn-network1+urn:felix:i2cat-stp2"
capacity="1000">

</property>
<property source_id="urn:publicid:tn-network1+urn:felix:i2cat-stp2"

dest_id="urn:publicid:tn-network1+urn:ogf:network:aist:network1:stp1"
capacity="500">

</property>
</link>

</rspec>

3.1.1.3 Custom API
The RO also offers a dedicated custom API that is used to configure (at start-up or during the life-cycle of the
process) the internal RO details, e.g. the list of the Resource Managers that belong to the same island, their IP
addresses and port numbers, the supported protocol, the provided endpoints of the resources, etc.

3.1.1.4 SynchronisaƟon
This module periodically persists a high-level view of the physical topology managed by it. This data is used both
internally (to provide an up-to-date list of the available resources to the experimenter) and also transmiƩed to
different modules, such as the Expedient [expedient] andMonitoring System to enable it to graphically show this
data.

The RO manages this recurrent tasks through both one-shot and periodical tasks, for example to realign the
discovered topology with all the underlying Resource Managers, to create a channel for the communicaƟon with
the Monitoring System, to release pending resources, etc. The first tasks are run once the RO module is started,
whereas the periodical jobs are triggered by an underlying daemon devoted to this specific maƩer.

3.1.2 Workflows

This secƟon describes the workflows that the RO follows through its GENIv3 API in order to perform basic opera-
Ɵons, such as lisƟng, allocaƟng, managing or deleƟng resources. The workflow expected by this API is defined in
the GENIv3 API Common Concepts site [11].

3.1.2.1 LisƟng the resources
The RO is configured to use an event scheduler for execuƟng acƟons at specified intervals or Ɵmes of the day.
Basically, when a Ɵmeout expires, the RO asks each ResourceManager the list of their physical resources and then
inserts this data into a non-relaƟonal database. The GUI (or any other GENIv3 compliant client, for that maƩer)
can retrieve the list of resources using the ListResources method. Upon receiving this request, the RO retrieves
the resources from its database and translates the entries into a proper RSpec, called adverƟsement Rspec, that
is defined as a well-known and standardized schema. The response can be considered just an aggregaƟon of all
the discovered resources at the RM layer. Figure 3.2 shows the ListResources workflow (this sequence diagram
and any other appearing in this document are generated using www.websequencediagrams.com).

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 16

Resource Planning and Provisioning

Figure 3.2: RO list-resources workflow

3.1.2.2 Reserving the resources
When the Allocate request is received, the RO validates the credenƟals of the experimenter and then parses
the XML request RSpec. The resources are then retrieved from the databases in order to fetch the Resource
Manager(s) to be contacted. Indeed, several allocate requests can be generated to fulfil the incoming request. At
the end, the RO replies with the list of reserved resources idenƟfied by their URNs, in the form of an aggregated
response. See workflow in Figure 3.3.

3.1.2.3 Provisioning the resources
When the RO receives a Provision request, the user credenƟals are validated first and then, using the slice URN
input parameter, this module retrieves all the resources involved into the reservaƟon that was previously per-
formed (through the Allocate method) for the specified slice. Once the affected RMs are idenƟfied, the provision
request is forwarded to each of them with the proper resource idenƟfiers. The workflow is finalised once each
aggregate returns their response to this method, in the form of amanifest RSpec. This method triggers an event
so that RO informs the Monitoring System to start collecƟng meters for all the provisioned slice resources. Refer
to Figure 3.4 for further details.

3.1.2.4 DeleƟng the resources
The workflow for the Deletemethod (Figure 3.5) is very similar to the previous one, as it only needs to send the
proper resource idenƟfier. The only difference is in the trigger event: on deleƟon, the RO informs theMonitoring

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 17

Resource Planning and Provisioning

Figure 3.3: RO allocate workflow

System to stop the monitoring procedure and to clean all the data associated to the corresponding slice (URNs).
It is important to note that the workflows for the other operaƟons (i.e. Status, Describe, PerformOpera-

ƟonAcƟon and others) follow similar steps as the ones here exposed. This allows parts of the implementaƟon
to be reused in different contexts, sƟcking to soŌware reuse precepts for aiming to save Ɵme and resources and
reducing the redundancy.

3.1.3 Future Work

The RO soŌware module is one of the new building blocks devised in the FELIX Architecture and has been devel-
oped from scratch during the Y2 of the project. This implies that the remaining effort will be spent to finish the
integraƟon with other soŌware components and to refine and rearrange the code during the integraƟon tests to
be performed before running the FELIX Use Cases defined in the D2.1 [12] deliverable.

It is noteworthy menƟoning that a fruiƞul bug fixing stage will take place whilst adopƟng the large-scale
FELIX facility as a real, heterogeneous and distributed tesƟng environment. Furthermore, future releases will
cover more advanced features, the following among then:

• Aggregate data regarding physical topology and slice informaƟon, previously retrieved fromother Resource
Orchestrators, in order to communicate it to the Master Monitoring System.

• Perform validaƟon of the credenƟals of the user request prior to performing the requested operaƟons.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 18

Resource Planning and Provisioning

Figure 3.4: RO provisioning workflow

Figure 3.5: RO delete workflow

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 19

Resource Planning and Provisioning

3.2 CompuƟng Resource Manager
The CompuƟng Resource Manager module (C-RM) is based on the OFELIA VirtualisaƟon Technology Aggregate
Manager. The C-RM allows an experimenter to provision and manage VMs on different physical servers.

The components and their funcƟonality are explained in the Design secƟon. There is some extra implemen-
taƟon that extends the funcƟonality of the C-RM in order the requirements from FELIX:

• AdopƟng the latest GENI testbed federaƟon API (GENIv3) to allow allocaƟon prior to provisioning.

• Allowing user SSH keys contextualisaƟon in the Virtual Machines to enable direct access through public
keys.

The latest addiƟons collaborates in standardizing the access to the Resource Managers of the FELIX Frame-
work and to the resources provided by them; not only internally but also looking to possible inter-testbed feder-
aƟons.

This module contains a number of components and subcomponents that work together in order to reserve,
create, manage and delete the requested Virtual Machine resources.

3.2.1 Design

Building blocks
The components of this module could be grouped into 1) a core in charge of background operaƟons, also exposed
through a series of APIs, 2) the Agent that is present in the virtualisaƟon server and interacts with the core of
the C-RM, 3) the Policy Engine used by the core to evaluate requests prior to provisioning and 4) a web-based
GUI to allow easier management for experimenters and administrators. These components and some other sub-
components are depicted in Figure 3.6.

The core implements the basic funcƟonality through a number of components (e.g. the Dispatcher of the
different acƟons and responses, parsers and craŌers, etc). Some of the funcƟonaliƟes provided by them are
indirectly exposed through a series of northbound APIs, namely GENIv3, GENIv2 and OFELIA custom APIs. The
first two are widely adopted in federated testbeds; being the first the latest version and allowing both allocaƟon
and provisioning of resources. Internally, the requests may traverse different components and behave differently,
depending on the entry point (i.e. whether the user requestwas generated via theGUI or using someCLI to access
the exposed APIs). AŌer persisƟng the informaƟon in the database and provisioning some associated resources
(e.g. such as MAC and IP), the core communicates with the agent in the desired server.

The Agent, on the other hand, acts as an interface for managing Virtual Machines on the desired physical
server or host. This means the Agent is able to communicate with the hypervisor that is running on the physical
virtualizaƟon server, thereby being able ofmanaging the creaƟon, deleƟon ormanagement of the guestmachine.
AŌer a VM is instanƟated, a user may be able to authenƟcate on the machines either through the LDAP module
or by contextualizing the user's SSH keys into the Virtual Machine. The descripƟon on how a user may provide
his public SSH key for this purpose follows in deliverable D3.4 [13]

The Policy Engine evaluates every incoming request against a list of rules or restricƟons determined by the
administrator of each domain. Such evaluaƟon is performed sequenƟally in order to validate against the first
matching rule or, alternaƟvely, exit if none of them matched. Before the VM can be effecƟvely provisioned and
the request sent to the Agent, the request must comply with the established restricƟons.

The last component, the web GUI of the C-RM, allows the administrator to manage virtualized resources in
their domain in a clear way; so that the manager can see the status of every VM per server, manage the ranges
of IPs and MACs, define restricƟons and so on.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 20

Resource Planning and Provisioning

Figure 3.6: Components of the FELIX C-RM

3.2.1.1 CommunicaƟon between blocks
Once a user submits a request, it is passed down; depending on the user being an experimenter or an adminis-
trator. For the typical case of the creaƟon of a VM, the experimenter access through the GUI to ask for a VM. This
request is intercepted by the Dispatcher component. The data of the request is then marshalled and the specific
condiƟons set by the requester (e.g. quanƟty of memory, template name) are evaluated by the Policy Engine.
The IP and MAC associated to the VM are calculated and inserted into the request. AŌer this, the request is sent
over the network to the VirtualisaƟon Agent, through its southbound, custom API. Upon receiving the request,
the Agent interprets the request and communicates with the VirtualisaƟon Hypervisor in order to create the VM.
When the process is finished and the VM is created, the Agent sends a noƟficaƟon back to other subcomponents
involved on this (the GUI and the administraƟve panel of the C-RM).

The generated VM will be eventually accessed by an experimenter. In the original version of the C-RM, the
access to the VM is supported through basic authenƟcaƟon (user and password). This has been extended for
FELIX so that the VMs generated through the GENIv3 can be accessed via public keys, in compliance with SFA
[14].

3.2.1.2 Exposed interfaces
As one of the FELIX ResourceManager, thismodule offers twowell-knownAPIs (seeGENI AMAPI [15]) that enable
a programmaƟc, abstracted and standardized use of any resource in the testbed. These standard interfaces were
designed iniƟally by SFA and have been since revisited, standardized andwidely adopted by other infrastructures.

The main benefit of using such interfaces is to allow easier federaƟon between testbeds; that is, the sharing
of resources of different kinds and offered by different providers; but also serve for exposing a standard interface
that can help automaƟon and abstracƟon when it comes to reserve, provision or scheduler resources.

GENIv2 API
TheGENIv2 API is the previously accepted interface and is sƟll supported nowadays by several infrastructures.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 21

Resource Planning and Provisioning

Through a simple workflow, the more important methods and their funcƟonality can be observed:

• GetVersion: learn basic informaƟon about the C-RM, such as the format of the supported RSpecs.

• ListResources: retrieve descripƟon of available servers and their links to the switches in the same island.

• CreateSliver: provision and iniƟalize a Virtual Machine, according to an RSpec.

• SliverStatus: check status of the VM (sliver).

• RenewSliver: extend expiraƟon Ɵme for the VM.

• DeleteSliver: when done, delete the VM.

GENIv3 API
This is the latest interface adopted by the GENI and other testbeds community. Compared to the previous

interface, this allows new operaƟons such as the AllocaƟon (a reservaƟon, prior to the effecƟve provisioning of
the resource), or the PerformOperaƟonalAcƟon that allows extending operaƟons on a resource to include any
extra funcƟonality. The main methods are as follow:

• GetVersion: learn basic informaƟon about the C-RM, such as the format of the supported RSpecs.

• ListResources: retrieve descripƟon of available servers and their links to the switches in the same island.

• Allocate: request an (incremental) reservaƟon of a subset of resources (VMs), according to an RSpec.

• Provision: effecƟvely provision and get ownership of a subset of previously allocated VMs.

• Status: check the status of the VM(s) previously reserved or provisioned.

• PerformOperaƟonalAcƟon: a resource (or a number of resources) can be started, stopped or restarted.
Furthermore, this module implements the opƟonal operaƟonmethods to update the SSH keys of the users
on a VM and to retrieve the access informaƟon on the given Virtual Machine.

• Renew: extend expiraƟon Ɵme for the given VM or VMs. This can also be used to extend the reservaƟon
Ɵme for a VM.

• Delete: when done, delete one or more VMs. A reservaƟon can also be deleted with this command.

RSpecs
The request RSpec passed when performing an AllocaƟon operaƟonmust comply with a format similar to the

one in the sample below:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<rspec type="request"
xsi:schemaLocation="http://www.geni.net/resources/rspec/3

http://www.geni.net/resources/rspec/3/request.xsd"
xmlns="http://www.geni.net/resources/rspec/3"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:emulab="http://www.protogeni.net/resources/rspec/ext/emulab/1">

<node client_id="Verdaguer"
component_id="urn:publicid:IDN+ocf:i2cat:vtam+node+Verdaguer"
component_manager_id="urn:publicid:IDN+ocf:i2cat:vtam+authority+cm"
exclusive="true">

<sliver_type name="emulab-xen">
<emulab:xen cores="10" ram="8192" disk="50"/>
<disk_image name="urn:publicid:IDN+emulab-ops//DEB60_64-VLAN"/>

</sliver_type>
</node>

</rspec

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 22

Resource Planning and Provisioning

As observed in the sample RSpec, the data being transmiƩed with this method must contain at least the
following informaƟon to idenƟfy the server containing the requested machine: 1) the client ID or name of the re-
quested virtual machine, 2) the component ID or URN of the virtualisaƟon server, and 3) the component manager
or URN of the authority of such server, that is, the RM itself.

To beƩer specify the requirements of the VM being requested, the sliver type (type of virtualisaƟon), disk
image name (URN of the selected template or flavour) and other parameters such as the RAM or disk size can be
passed.

3.2.2 Workflows

In this secƟon we idenƟfy the most common operaƟons for the C-RM and describe their workflow through se-
quence diagrams and flow charts.

3.2.2.1 RequesƟng a new VM
The experimenter may ask for one or mulƟple VMs to be generated by interacƟng with the Expedient GUI or by
directly contacƟng the CLI. Depending on the entry point for the generaƟon of the virtual machine through the
C-RM, it may be necessary to request one by one and start each VM aŌerwards (when requesƟng VMs through
Expedient) or it could be possible to provision mulƟple VMs at once and access them right aŌer, when using the
GENIv3 CLI.

The differences between the workflows that are them is explained by the fact that GENIv3 establishes a set of
standard workflows that are different to previous implementaƟons, more focused on usability and in minimising
resource usage.

Figure 3.7: C-RM - RequesƟng a Virtual Machine

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 23

Resource Planning and Provisioning

3.2.2.2 Accessing a VM
AŌer the VM is provisioned, it is automaƟcally started and the experimenter is able to access through the SSH
protocol. The authenƟcaƟon and authorisaƟon procedures may vary depending on the way the machine was
generated. Summing up, the following workflow takes place:

• Accessing a VM created through Expedient

1. SSH to the machine with the Expedient username.

2. The LDAP PAM modules present in the VM contrast the user credenƟals against the ones stored in
the LDAP.

3. On match, the user is authorised and able to enter the VM.

• Accessing a VM provisioned through CLI

1. SSH to the machine with the username associated to the credenƟals passed to C-RM.

2. A matching between the local private key and the remote public key is performed.

3. On match, the user is authorised and is able to enter the VM.

It is worth noƟng here that, once the Expedient, C-RM and AAA are fully integrated; the public key associated
to the cerƟficates of the experimenter will be passed to the VM on creaƟon Ɵme. When accessing the VM, the
experimenter shall be able to follow the same steps as for a VM provisioned through CLI.

3.2.2.3 DeleƟng a VM
When the experimenter does not need to use a parƟcular Virtual Machine any more, it is Ɵme to delete it. Ma-
chines generated through the GUI must be deleted one by one, while the VMs created using the GENIv3 CLI can
be deleted at once.

Figure 3.8: C-RM - DeleƟng a Virtual Machine

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 24

Resource Planning and Provisioning

3.2.3 Future Work

While this module already fulfills its requirements, the following features could be contemplated for future re-
leases:

• AdverƟse every available kind of templates present at a given server, when the GENI's "ListResources"
method is called.

• Enable the instanƟaƟon of a VM with any kind of available template through the GENI interfaces.

• Contact the Monitoring Service to retrieve metrics on physical servers and show these on the administra-
Ɵon panel.

3.3 SoŌware-Defined Networking Resource Manager
The SoŌware-DefinedNetworking ResourceManager (SDN-RM)module is based on theOFELIA SoŌware-Defined
Aggregate Manager, which is in turn based on Stanford's Opt-in Manager. The SDN-RM allows an experimenter
to request, update and delete OpenFlow resources.

The SDN-RM module offers similar northbound APIs as the C-RM, that is, the GENIv3, GENIv2 and OFELIA
custom APIs. As introduced before, the GENI APIs are widely adopted in testbeds. The request here may also
traverse different components and behave differently, depending on the entry point. This module has the parƟc-
ularity of acƟng as a proxy between the experimenter and the domain controller (here, FlowVisor); so the laƩer
can operate on the request and communicate it to the controller, in charge of inserƟng the perƟnent OpenFlow
rules into the SDN-enabled switches.

The SDN-RM has also been further extended to meet requirements from FELIX. This extension comprises:

• AdopƟng the latest GENI testbed federaƟon API (GENIv3) to allow allocaƟon prior to provisioning.

• Implement an SDN-RM plug-in for the GUI that eases the process of selecƟon of a VLAN for the slicing of
experiments.

3.3.1 Design

3.3.1.1 Building blocks
The SDN-RM can be roughly divided into 1) its core funcƟonality, 2) the web-based GUI and 3) the proxy class to
communicate with the FlowVisor module.

The core receives requests for FlowSpaces from the Expedient GUI or through the GENI APIs. Internally, it
parses those requests, translates them to its internal informaƟon model, fills any missing informaƟon required
by the FlowVisor module and sends a properly formaƩed request to the aforemenƟonedmodule by instanƟaƟng
the proxy class that is able to talk with the FlowVisor API.

The web GUI features the main funcƟon of approval/denial of FlowSpaces (either aŌer manual inspecƟon of
the administrator or automaƟc; when possible) and also provides configuraƟon opƟons and basic monitoring of
the currently approved FlowSpaces per slice and the rules contained on them.

3.3.1.2 CommunicaƟon between blocks
An incoming request for a FlowSpace is passed down to the SDN-RM. This validates the type of the data against
the expected format as a first step, then checks that there are no similar slices or rules already provisioned. The
data is iniƟally persisted in its database as an Experiment Flowspace and idenƟfied as anOpt-in FlowSpace once it
has been granted. AŌer the input data is validated and persisted, the request is ready to be sent to the FlowVisor
controller.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 25

Resource Planning and Provisioning

This controller is in charge of interacƟng with the switches to input the OpenFlow rules selected by each
user for their own experiment, as well as being able to steer traffic according to the user controller available per
slice. This is, in the end, the client that speaks the OpenFlow protocol to the switches and that enables proper
transmission of packets along the SDN network.

3.3.1.3 Exposed interfaces
The SDN-RM inherits its base from the OFELIA OFAM, which exposes the GENIv2 interface. Now, as any other
FELIX ResourceManagers, this module also offers the GENIv3 API; which enables a programmaƟc, abstracted and
standardized use of any resource in the testbed. This -as the previous standard interfaces- were designed iniƟally
by SFA and have been since revisited, standardized and widely adopted by other infrastructures.

The main benefit of using such interfaces is to allow easier federaƟon between testbeds; that is, the sharing
of resources of different kinds and offered by different providers; but also serve for exposing a standard interface
that can help automaƟon and abstracƟon when it comes to reserve, provision or scheduler resources.

GENIv2 API
TheGENIv2 API is the previously accepted interface and is sƟll supported nowadays by several infrastructures.

Through a simple workflow, the more important methods and their funcƟonality can be observed:

• GetVersion: learn basic informaƟon about the SDN-RM, such as the format of the supported RSpecs.

• ListResources: retrieve descripƟon of the topology (switches and their interconnecƟons).

• CreateSliver: provision and iniƟalize a set of datapath IDs and condiƟons (called FlowSpace), according to
an RSpec.

• SliverStatus: check status of the FlowSpace (sliver).

• RenewSliver: extend expiraƟon Ɵme for the FlowSpace.

• DeleteSliver: when done, delete the FlowSpace.

GENIv3 API
This is the latest interface adopted by the GENI and other testbeds community. Compared to the previous

interface, this allows new operaƟons such as the AllocaƟon (a reservaƟon, prior to the effecƟve provisioning of
the resource), or the PerformOperaƟonalAcƟon that allows extending operaƟons on a resource to include any
extra funcƟonality. The main methods are as follow:

• GetVersion: learn basic informaƟon about the SDN-RM, such as the format of the supported RSpecs.

• ListResources: retrieve descripƟon of the topology (switches and their interconnecƟons).

• Allocate: request reservaƟon of a subset of resources (VMs), according to an RSpec. In contrast with C-RM,
this is not incremental: a new allocaƟon does not extend previous reservaƟons.

• Provision: effecƟvely provision and get ownership of a subset of previously allocated FlowSpaces.

• Status: check status of the reservaƟon or the FlowSpace.

• PerformOperaƟonalAcƟon: the resource can be started, stopped or restarted. When stopped, the FlowS-
pace is removed from the FlowVisor controller (i.e. connecƟvity if effecƟvely disabled). A FlowSpace that
has been previously granted is ensured to be automaƟcally granted on subsequent starts or restarts.

• Renew: extend expiraƟon Ɵme for the FlowSpace. This can also be used to extend the reservaƟon Ɵme
for a FlowSpace.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 26

Resource Planning and Provisioning

• Delete: when done, delete the FlowSpace. A reservaƟon can also be deleted with this command.

RSpecs
The request RSpec passed when performing an AllocaƟon operaƟonmust comply with a format similar to the

one of the following sample:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<rspec type="request"
xs:schemaLocation="http://www.geni.net/resources/rspec/3

http://www.geni.net/resources/rspec/3/ad.xsd
http://www.geni.net/resources/rspec/ext/openflow/3
http://www.geni.net/resources/rspec/ext/openflow/3/of-ad.xsd"

xmlns="http://www.geni.net/resources/rspec/3"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:openflow="http://www.geni.net/resources/rspec/ext/openflow/3">

<openflow:sliver email="user@geni.net"
description="My GENI experiment"
ref="http://www.geni.net">

<openflow:controller url="tcp:myctrl.example.net:9933" type="primary" />
<openflow:group name="mygrp">

<openflow:datapath
component_id="urn:publicid:IDN+openflow:ocf:i2cat:00:10:00:00:00:00:00:02"
component_manager_id="urn:publicid:IDN+ocf:i2cat:ofam+authority+cm"
dpid="00:10:00:00:00:00:00:02">

<openflow:port name="GBE0/1" num="1"/>
<openflow:port name="GBE0/2" num="2"/>

</openflow:datapath>
</openflow:group>
<openflow:match>

<openflow:use-group name="mygrp" />
<openflow:packet>

<openflow:dl_type value="0x801" />
<openflow:nw_dst value="10.1.1.0/24" />
<openflow:nw_proto value="6, 17" />
<openflow:tp_dst value="80, 81" />
<openflow:dl_vlan value="890,900" />

</openflow:packet>
</openflow:match>

</openflow:sliver>
</rspec>

As it can be seen in this sample RSpec, the data transmiƩed along with this method must contain enough
informaƟon to describe the slice and its owner (by using the e-mail of the experimenter, the descripƟon of the
slice and a reference to the project associated to it); as well as defining the most important part: the group.

The group idenƟfies exhausƟvely the matching condiƟons required to filter the desired packets and which
acƟons are taken. This combinaƟon defines the behaviour of the experiment. For defining this, it is possible to
use the datapath ID to idenƟfy a network element, choose a subset of its ports and define a packet XML structure
where thematching condiƟons are defined, namely the source and/or desƟnaƟon VLANs, IP addresses, ports and
many others.

3.3.2 Workflows

In this secƟon we idenƟfy the most common operaƟons for the SDN-RM and describe their workflow through
sequence diagrams and flow charts for beƩer comprehension.

3.3.2.1 RequesƟng a FlowSpace
The experimenter can define a FlowSpace either through the Expedient GUI or through the CLI. AŌer this request
is effecƟvely provisioned, the user can start the experiment and send packets properly through the SDN network.
In case the FlowSpace needs to be later on updated, the experimenter will proceed in a similar fashion.

3.3.2.2 VLAN assignment
The VLAN manager is a component devoted to idenƟfying free VLAN(s) between SDN-RMs in a given slice that

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 27

Resource Planning and Provisioning

Figure 3.9: SDN-RM - RequesƟng a FlowSpace

spans across different domains (see Figure 3.10). It is able to retrieve a single VLAN tag or a VLAN range and it is
enabled or disabled by configuring a seƫng on the SDN-RM. The VLANs are treated as a list of integers, ranging
from 0 to 4096. However, due to the island configuraƟon performed by each Island Manager, there are VLANs
that may be tagged as reserved and cannot be used for slicing.

When a experimenter requests a FlowSpace, one ormore VLANsmay be requested. To ease the assignaƟonof
that value or set of values, and provided that the user only selected one SDN-RM, the VLAN manager will return
directly an available VLAN. If the experimenter uses two or more SDN-RMs, the VLAN manager contacts with
every SDN-RM, gets all the used VLANs and finds VLAN or VLAN range available in all the SDN-RMs. Specifically,
its workflow is as follows:

1. It analyses the number of SDN-RMs used in the slice.

• If only one SDN-RM is used, it directly asks for a random available VLAN.

• Retrieve the used VLANs of every domain. It was decided to retrieve the used VLAN because the list
of used VLANs is shorter than the list of available VLANs, a list of almost 4096 elements (the total
amount of VLANs subtracƟng the reserved VLANs and the ones used on slices).

2. The list of VLANs can be treated as a set of elements, where all the used VLANs are the union of all the
used VLAN sets.

3. To get the used VLANs set, it is only required to make the difference between the all used VLANs set and
the all available VLANs (that is, 4096 VLAN tags)

4. Then is evaluated whether the user requested a single VLAN or a VLAN range.

• If the user selected a single VLAN, then the VLAN manager assigns one random VLAN from the final
VLAN set.

• If the user requested a VLAN range, VLAN manager takes a random element from the list X, then
compares if the value placed on the posiƟon equal to the length of the VLAN range is X+(VLAN Range

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 28

Resource Planning and Provisioning

Figure 3.10: VLAN manager workflow

Length), if true then returns the range. If not true, then tries to get another randomvalue of the VLAN
set and repeats the process.

3.3.2.3 DeleƟng a FlowSpace
Once the FlowSpace has served its purpose, the experimenter may want to delete it. This can also be done
through any of the UIs in a simple manner.

Figure 3.11: SDN-RM - DeleƟng a FlowSpace

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 29

Resource Planning and Provisioning

3.3.3 Future Work

As with the C-RM module, the SDN-RM module is essenƟally complete for the current requirements, though it
will probably be subject to short-term modificaƟons as needed by the set up of he inter-communicaƟon through
NSI and also to increase automaƟon for the current FlowSpace approval process.

Besides that, the following features could be contemplated for future releases:

• Extend informaƟon presented through the GUI to allow beƩer management.

• Improve internal data structure (e.g. representaƟon of FlowSpace, ExperimentFlowSpace…) to allow fine-
grained management and easier management.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 30

Resource Planning and Provisioning

4 Deployment
The modules presented in this deliverable provide a series of scripts along with the source that allow the domain
administrator to deploy the components separately according to each domain's preferences. In the future, the
deployment process is expected to be improved by using any of the open source process automaƟon frameworks
that are currently available. This would allow periodic redeployments or an easy way to recover from a failure in
the deployment servers of any domain.

This secƟon provides some details on how to deploy the Resource Orchestrator (RO) and the Resource Man-
agers for compuƟng (C-RM) and SDN (SDN-RM) resources. That is, we briefly explain how to:

• Get the code from the GIT-based FELIX repository [16].

• Install the required dependencies for each component.

• Install and configure the component itself.

At the end we also provide useful informaƟon on how the users can perform different operaƟons on the
modules that are correctly up and running.

4.1 Resource Orchestrator
The RO is a pure Python module based on the SFA architecture [14] and (parƟally) the eiSoil [17] framework.
Basically it is composed of 2 main threads that follow an event-driven approach.

The first one, based on the flask-rpc server, is responsible to manage the GENIv3 interface and provide the
provisioning for the different kind of resources. The (GENI) XML messages that are exchanged among processes
or daemons are parsed and formaƩed according to proposed schemas (using the lxml library). Moreover, the
operaƟons are performed only in case of a success of the authenƟcaƟon and authorizaƟon mechanisms (based
on the GENI ClearingHouse direcƟves).

The second one, based on apscheduler python module, manages auto-generated events (periodic or one-
shot) to obtain and update the discovered physical topology. The resources are stored into a non-relaƟonal
database, based on themongo-db server.

The following secƟons want to clarify the aforemenƟoned dependencies trying to give further soŌware de-
tails.

4.1.1 Requirements and Dependencies

Currently there is a small set of dependencies needed by the RO to work. As it has been parƟally based on the
GENI and eiSoil frameworks, it shares some of their requirements and also requires some others.

4.1.1.1 Requirements
The working environment must be a Debian-based distribuƟon. Specifically, the RO is being developed under
Debian 7 (Wheezy).

Because the RO provides GENI APIs -which use credenƟals signed by a ClearingHouse-, the AAA module [13]
must be running along with the RO. The RO also uses theMongoDB database for resource synchronisaƟon; there-
fore this service must be running as well.

4.1.1.2 Dependencies
The packages required by RO are retrieved either by Debian's Advanced Packaging Tool (apt-get) and the Python
version system (easy_install, pip).

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 31

Resource Planning and Provisioning

Advanced packaging tool
The following Debian packages must be installed on the system for RO to properly work:

sudo apt-get install python-pip mongodb-server python-lxml python-m2crypto
sudo apt-get install python-openssl python-dateutil xmlsec1

Pip
The following python packages must be installed on the system for RO to properly work:

sudo pip install argparse pymongo Flask-PyMongo python-dateutil
sudo pip install lxml blinker flup Flask-XML-RPC unittest2
sudo pip install networkx apscheduler requests

4.1.2 ConfiguraƟon and InstallaƟon

4.1.2.1 InstallaƟon
Save the resource-orchestrator branch under /opt/felix:

mkdir -p /opt/felix/resource-orchestrator
git clone https://github.com/dana-i2cat/felix.git /opt/felix/resource-orchestrator
git checkout resource-orchestrator

In order to install the required dependencies, the following script can be run:
cd /opt/felix/resource-orchestrator/modules/resource/orchestrator/deploy
./install.sh

4.1.2.2 ConfiguraƟon
The modules/resource/orchestrator/conf directory contains a set of configuraƟon files that are used by the RO.
These are explained as follows:

RO parameters
The file ro.conf contains the core parameters of the RO module.

SecƟon Parameter Type DescripƟon
scheduler frequency Integer Seconds between runs of the RO daemons to

synchronise resources between RO and other
available modules

monitoring protocol String Type of protocol used by the Monitoring Sys-
tem

monitoring address String IP address where the MS is running
monitoring port Integer Port where the exposed server of the MS is

listening
monitoring endpoint String Endpoint to reach the corresponding URL

where the RO pushes the monitoring data.
Table 4.1: RO General Parameters

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 32

Resource Planning and Provisioning

Server parameters
The file flask.conf gathers parameters for the configuraƟon of the server. Some of themost important parameters
are explained below.

SecƟon Parameter Type DescripƟon
general host String IP where the server is running (0.0.0.0 to

make publicly accessible)
general port Integer Port of the server where the server will be lis-

tening
general debug Boolean When true, performs some acƟons that are

not called in producƟon mode
fcgi enabled Boolean Determine if FastCGI is used within Flask
fcgi port Integer Port of the server where the FastCGI server

will be listening
cerƟficates force_client_cerƟficate Boolean Enable or disable verificaƟon of the cerƟfi-

cates of the client
Table 4.2: RO Server Parameters

GENIv3 parameters
The file geniv3.conf gathers parameters for the configuraƟon of the GENIv3 interface exposed by the RO.

SecƟon Parameter Type DescripƟon
general rspec_validaƟon Boolean Enable or disable validaƟon of RSpecs passed

in requests
cerƟficates cert_root String RelaƟve path to the folder where the cerƟfi-

cates or trusted clients are kept
Table 4.3: RO GENIv3 Parameters

Logging parameters
The file log.conf contains arguments to further customise the logs.

SecƟon Parameter Type DescripƟon
general name String Name of the log
general level String Level of the log in a Pythonic format (e.g. log-

ging.DEBUG)
general format String Formaƫng string that customises the struc-

ture of the logged messages
general file String Name of the log file (extension included)

Table 4.4: RO Logging Parameters

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 33

Resource Planning and Provisioning

4.1.2.3 OperaƟon
A typical set of operaƟons performed on the RO comprises starƟng/stopping it and accessing through exposed
(GENIv3) API, which is implemented on top of a XMLRPC server.

Managing the server
The server can be started or stopped as explained below.

StarƟng the server
In order to start the RO server, it can be run as a daemon by calling its initscript:
/etc/init.d/felix-ro start

Or, alternaƟvely, running its main class directly:
cd /opt/felix/resource-orchestrator/modules/resource/orchestrator/src
python main.py

Stopping the server
The way to stop the RO's flask server is, respecƟvely, using the same initscript with the stop argument or

sending a SIGQUIT signal (for instance, Ctrl + D).

OperaƟng through the GENI interfaces
The Resource Orchestrator operates in the background and exposes a GENIv3 API for interacƟon, in a similar way
as other modules in FELIX. There are different ways to connect to the RO, such as accessing through XMLRPC
clients with the proper cerƟficates or using a command-line interface. For example, this module can be accessed
using the OMNI client in the following manner:

python omni.py -V3 -a <url> <method> <arguments>

Where the arguments may be opƟonal or required and refer to an specific method (e.g. --no-compress for
listresources) or to the manner in which OMNI is generated (e.g. --debug or -c omni_config).

We include some working examples with the available methods and some arguments:
common_args="-V3 -a https://127.0.0.1:8440/xmlrpc/geni/3/ -o"

python omni.py $common_args getversion
python omni.py $common_args listresources --no-compress --available
python omni.py $common_args describe <slice-name>
python omni.py $common_args allocate <slice-name> <req-rspec>

--end-time=<epoch-time>
python omni.py $common_args renew <slice-name> <epoch-time>
python omni.py $common_args provision <slice-name>
python omni.py $common_args status <slice-name or URNs>
python omni.py $common_args performoperationalaction <slice-name>

{geni_start, geni_stop, geni_restart}
python omni.py $common_args delete <slice-name or URN>
python omni.py $common_args shutdown <slice-name or URN>

A noteworthy point on security: in order for the RO to proxy requests to other modules using these interfaces,
every module must trust the RO; that is, for the RO to send a request to any Resource Manager, the laƩer must
trust the former. The trust process is currently performed by placing the RO server cerƟficate on the trusted or
trusted_roots of each module accessed by the Resource Orchestrator.

4.2 CompuƟng Resource Manager
The C-RM is a module developed using the Python language and the Django web framework, and it includes the
componentsmenƟoned in theDesign secƟon: 1) the core, 2) the Agent, 3) the Policy Engine and 4) theweb-based
GUI.

The core, the Agent and the web-based GUI are released together in the form of source code. On the other
hand, the Policy Engine is designed as an external library which is released on its own and in the form a Debian
package.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 34

Resource Planning and Provisioning

Once the C-RM sources are downloaded and the installaƟon or upgrade script is run, these scripts automate
the installaƟon and help with its configuraƟon. This is performed this way because of the PE integraƟon within C-
RM. As for the Agent installaƟon, it has different requirements (e.g. structure of folders, installaƟon requirements
and workflow). This installaƟon is to be performed in a different machine, where the hypervisor is running.

This is the list of requirements and dependencies to install C-RM. It is the basically the same as the needed
for other OFELIA Control Framework components (e.g. Expedient, OpenFlow AM) and thus almost the same for
the FELIX RMs.

4.2.1 Requirements and Dependencies

4.2.1.1 Requirements
The working environment must be a Debian-based distribuƟon. Specifically, the framework is ensured to work
under Debian 6 (Squeeze), but has been gradually being ported to Debian 7 (Wheezy). The only excepƟon to
this occurs in the VirtualisaƟon Agent environment, which has not been migrated yet due to hard environment
constraints. On the other hand, the set up of the FELIX islands provided feedback useful for further steps in this
aspect.

Besides, the C-RM module requires downloading and configuring the PyPElib module during its installaƟon
procedure. The PyPElib module allows defining and evaluaƟng against a set of rules with specific filters and data,
as chosen by the user.

4.2.1.2 Dependencies
There is a number of packages required for C-RM to work. These are retrieved either by Debian's Advanced
Packaging Tool (apt-get) and the Python version system (easy_install, pip).

Advanced packaging tool
The following Debian packages must be installed on the system for C-RM to properly work:

sudo apt-get install apache2 openssl ssl-cert libapache2-mod-wsgi libapache2-mod-macro
python-setuptools python-django python-mysqldb python-django-auth-ldap python-openssl
python-m2crypto python-dateutil python-decorator python-paramiko build-essential
python-imaging python-django-registration python-configobj python-pyparsing python-lxml
python-argparse python-pexpect

Pip
The following python packages must be installed on the system for C-RM to properly work:

django-evolution (<=0.6.9), django-autoslug, django-extensions (<=1.2.5)

4.2.2 ConfiguraƟon and InstallaƟon

4.2.2.1 InstallaƟon
Save the ocf branch under /opt/felix:

mkdir -p /opt/felix/ocf
git clone https://github.com/dana-i2cat/felix.git /opt/felix/ocf
git checkout ocf

Now, the root chooses which modules to install through a screen with a menu:
cd /opt/felix/ocf/deploy
python install.py

The module to be selected in the menu is named vt_manager.
Once the installaƟon starts, the OFVER installaƟon scripts under the C-RM (or vt_manager) folder are trig-

gered and will ask whether the current installaƟon is run within the OFELIA project or not. Select No (N) for
non-OFELIA testbeds.

There are similar procedures for upgrading and removing the modules as well.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 35

Resource Planning and Provisioning

4.2.2.2 ConfiguraƟon

General parameters
Table 4.5 shows general C-RM parameters.

FLAG Values Comments
ISLAND_NAME String Island/testbed name. Shown on

the upper right corner of the Web
frontend

VTAM_IP String C-RM host domain name/IP
VTAM_PORT String Web UI and XMLRPC TCP port (de-

fault:8445)
XMLRPC_USER String XMLRPC interface username
XMLRPC_PASS String XMLRPC interface username's

password
Table 4.5: C-RM General Parameters

Root (Island Manager) account informaƟon
Root account parameters are listed in Table 4.6.

FLAG Values Comments
ROOT_USERNAME String C-RM's root username
ROOT_PASSWORD String C-RM's root password
ROOT_EMAIL String C-RM's root email

Table 4.6: C-RM Root Account Parameters

Database parameters
Important database parameters can found in following table.

FLAG Values Comments
DATABASE_USER String MySQL username
DATABASE_PASSWORD String MySQL password
DATABASE_HOST String MySQL host (e.g. 127.0.0.1)
DATABASE_NAME String C-RM database name

Table 4.7: C-RM Database Parameters

Configure Agent on a virtualisaƟon server
The configuraƟon of the Agent is done during the installaƟon process. The most important parameter to take
into account is the XMLRPC_PASSWORD. This parameter is required later on, when adding servers to the C-RM.

VM AM GUI procedures
Various VM AM parameters to be configured are described below.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 36

Resource Planning and Provisioning

Adding an Ethernet/IP range
The virtualisaƟon servers that are able to generate the VMs of the users must have one available range (pool)

of MAC addresses and IPs. This, in a common configuraƟon, means that at least one global IP and MAC range
shall be defined. This is further explained in the next secƟons.

Global vs. non-global ranges
By default, if a server is not subscribed to any range in parƟcular, it will use all the global ranges to obtain

MACs and IPs, in a random order. However, if the servers subscribe to one or more ranges (whether they are
global or not), VMs will be assigned an address contained only in the pool of subscribed ranges.

The global flag, accordingly, should be disabled by those ranges that are parƟcular to one server and that do
not apply to the rest of the servers (for instance a local tesƟng server out of the addressing scheme used for the
testbed). In general, a server should use global ranges for simplicity.

CreaƟng a range
The C-RM UI dashboard allows to define starƟng and ending values for the IPv4 and Ethernet ranges. Such

ranges (along with other parameters such as the network mask, gateway and DNS) will be used to assist the VM
generaƟon process with the needed networking informaƟon. It is possible to generate a range by accessing the
C-RM UI, then selecƟng the appropriate opƟon under Network Seƫngs and then click on Create range.

For IPv4 ranges, the following fields are available:

• Range name: Name used to idenƟfy the range.

• Global range: Flag that indicates whether the range is global or not.

• Range start IP: StarƟng IP address defined for the range.

• Range end IP: Ending IP address defined for the range.

• Network mask: Network mask to apply over the IPs.

• Gw: IP address of the default gateway for the VMs.

• Dns1: Main DNS used to generate IPs for VMs.

• Dns2: Secondary DNS used to generate IPs for VMs.

For Ethernet ranges, the following fields are available:

• Range name: Name used to idenƟfy the range.

• Global range: Flag that indicates whether the range is global or not.

• Start Mac Address: StarƟng physical address assigned to VMs.

• End Mac Address: Ending physical address assigned to VMs.

AŌer both IPv4 and Ethernet ranges have been set, it is possible to subscribe a given server to a specific range;
if on need of a parƟcular addressing schema per server.

CreaƟng a server
At least one server must be configured in order to provide VMs to the users. This is accessible either from

the main page or by the Administrate Server secƟon.

• UUID: AutomaƟcally generated.

• Enabled: The server may be disabled by non checking this field.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 37

Resource Planning and Provisioning

• Name: Name of the server.

• OS Type: Server's OS type.

• OS DistribuƟon: Server's OS type.

• OS Version: Server's OS version.

• VirtualizaƟon Technology: hypervisor that is running in the server. Currently restricted to XEN.

• URL of the Server Agent: URL where the Agent daemon in the server is listening. It should be https:
//DOMAIN_NAME:PORT/, where default PORT is 9229.

4.2.3 OperaƟon

The C-RMmay be used by an experimenter through the GUI or using its exposed interfaces. The basic operaƟons
are explained here.

4.2.3.1 OperaƟng through the GUI
Different funcƟonaliƟes of the C-RM can be accessed through the GUI: the experimenter is able to perform the
following operaƟons through the Expedient GUI (via the corresponding C-RM plug-in), whilst the administrator
is allowed to enter the specific C-RM GUI to configure part of the physical infrastructure and have direct control
on the resources. We document the approach of the experimenter in the following secƟons.

CreaƟng a VM
In order to create a virtual machine, the user shall access the Expedient GUI and access a previously exisƟng slice.
Provided that the slice contains at least one VirtualisaƟon RM (and thus is able to request this kind of resources),
the experimenter must choose an specific island and select a server on it. AŌer that, another page is loaded
where the user must define the following fields:

• Disc Image: The type of template used to generate the VM (e.g. Debian 6, 7…).

• Name: Name of the VM using alfanumeric characters.

• Memory: Size of virtual memory, in Mb.

• HD Setup Type: Type of virtualised hard disk; for instance a file image with or without parƟƟons.

• VirtualizaƟon Setup Type: Type of virtualisaƟon used; for instance through ParavirtualisaƟon or HVM.

AŌer the VM is requested, the peƟƟon is sent to the VirtualisaƟon Agent and the process of generaƟng the
virtual machine starts in the physical substrate. Once finished, the GUI shows a change of status indicaƟng the
availability to start operaƟng on the machine.

Managing a VM
Once the VM is provisioned by the previous set of steps, it can be started, stopped, rebooted or deleted through
the same page with the details of the slice. A similar process is started on background so the Agent is contacted
and the command is executed remotely.

Accessing the VM
When theVM is up and running, the experimenter can access it through ssh. The authenƟcaƟon and authorisaƟon
processes are taken using the credenƟals of the user, either being explicitly passed (basic auth). With the full
integraƟon of the AAA module, the machines will be accessible through the user's public key.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 38

https://DOMAIN_NAME:PORT/
https://DOMAIN_NAME:PORT/

Resource Planning and Provisioning

4.2.3.2 OperaƟng through the GENI interfaces

CreaƟng a VM
When using the public interfaces through a command line (or indirectly through a client), the process is a bit
more complicated; both in terms of compliance to the workflow as well as handling the credenƟals that must be
passed along with the commands.

Here, the VM is iniƟally requested by calling to the Allocate method with a file called RSpec. This file must
follow a specific format (GENIv3 compliant) and contains a specific set of informaƟon, such as the server to host
it and the name. This request acts as a reservaƟon, as it keeps the requested resources on hold during a specific
period of Ɵme. Before this Ɵme is exhausted, a Provision request must be made to effecƟvely provision the VM
and start operaƟng on it. AlternaƟvely, a Renew command may be issued to extend the reservaƟon.

Managing a VM
When the machine is provisioned and ready to use, the experimenter is able to invoke a PerformOperaƟonalAc-
Ɵon command to start, stop and restart the VM. The experimenter may also call Renew once again on the provi-
sioned resource to extend its or use the Delete operaƟon on it.

Accessing a VM
Once the VM is up, the experimenter can access it the same way, through ssh. The authenƟcaƟon and authori-
saƟon processes are performed now by matching against the user public key that is placed on the VM at the Ɵme
of its generaƟon.

4.3 SoŌware-Defined Networking Resource Manager
The SDN-RM is another module developed using the Python language and the Django web framework. It consists
of the components menƟoned in the Design secƟon: 1) its core funcƟonality, 2) the web-based GUI and 3) the
proxy class to communicate with the FlowVisor module.

The FlowVisor module is a third-party library developed in Java that is able to communicate with the switches
and proxy packets to their corresponding experiment controller. The laƩer is required by the SDN-RM.

All of these modules are released together in the form of source code and are installed using the scripts
provided by OFVER, released with this module. Another script automates the installaƟon and configuraƟon of
the FlowVisor package right before the SDN-RM is installed or upgraded.

4.3.1 Requirements and Dependencies

This is the list of requirements and dependencies to install SDN-RM. It is the basically the same as the needed for
other OFELIA Control Framework components (e.g. Expedient, VirtualisaƟon AM) and thus almost the same for
the FELIX RMs.

4.3.1.1 Requirements
The working environment must be a Debian-based distribuƟon. Specifically, the framework is ensured to work
under Debian 6 (Squeeze), but has been gradually being ported to Debian 7 (Wheezy).

Besides, the SDN-RM module requires downloading and configuring the FlowVisor package, as it is able to
communicate with the OpenFlow-enabled switches.

4.3.1.2 Dependencies
There is a number of packages required for SDN-RM to work. These are retrieved either by Debian's Advanced
Packaging Tool (apt-get) and the Python version system (easy_install, pip).

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 39

Resource Planning and Provisioning

Advanced packaging tool
The following Debian packages must be installed on the system for SDN-RM to properly work:

sudo apt-get install apache2 openssl ssl-cert libapache2-mod-wsgi libapache2-mod-macro
sudo apt-get install python-setuptools python-django python-mysqldb
sudo apt-get install python-django-auth-ldap python-openssl python-m2crypto
sudo apt-get install python-dateutil python-decorator python-paramiko build-essential
sudo apt-get install python-imaging python-django-registration python-configobj
sudo apt-get install python-pyparsing python-lxml

Pip
The following python packages must be installed on the system for SDN-RM to properly work:

django-evolution (<=0.6.9), django-autoslug, django-extensions (<=1.2.5)

4.3.2 ConfiguraƟon and InstallaƟon

4.3.2.1 InstallaƟon
Save the ocf branch under /opt/felix:

mkdir -p /opt/felix/ocf
git clone https://github.com/dana-i2cat/felix.git /opt/felix/ocf
git checkout ocf

Now, the root chooses which modules to install through a screen with a menu:
cd /opt/felix/ocf/deploy
python install.py

The module to be selected in the menu is named opƟn_manager.
Once the installaƟon starts, the OFVER installaƟon scripts under the SDN-RM (or opƟn_manager) folder are

triggered and will ask whether the current installaƟon is run within the OFELIA project or not. Select No (N) for
non-OFELIA testbeds.

There are similar procedures for upgrading and removing the modules as well.

4.3.2.2 ConfiguraƟon

FLAG Values Comments
SITE_DOMAIN String SDN-RM host domain name

Table 4.8: SDN-RM General Parameters

Root (Island Manager) account informaƟon

FLAG Values Comments
ROOT_USERNAME String SDN-RM's root username
ROOT_PASSWORD String SDN-RM's root password
ROOT_EMAIL String SDN-RM's root email. This is used

to send noƟficaƟons
Table 4.9: SDN-RM Root Account Parameters

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 40

Resource Planning and Provisioning

Database parameters

FLAG Values Comments
DATABASE_USER String MySQL username
DATABASE_PASSWORD String MySQL password
DATABASE_HOST String MySQL host (e.g. 127.0.0.1)
DATABASE_NAME String SDN-RM database name

Table 4.10: SDN-RM Database Parameters

GUI procedures
Configuring the connecƟon with Expedient

From theManage Website buƩon two acƟons should be performed:

1. Set Clearinghouse: This sets the username/password which the Clearinghouse (in Expedient) will use to
authenƟcate against SDN-RM when using the XMLRPC interface. Just set:

• Username

• Password

2. Set FlowVisor: This sets the parameters required to communicate with the FlowVisor:

• FV Name: Name to idenƟfy this FlowVisor instance.

• Username: Username to use to access the FlowVisor (set during FlowVisor installaƟon)

• Password: Password to use to access the FlowVisor (set during FlowVisor installaƟon)

• Server URL: URL of the FlowVisor's XMLRPC interface. It should be https://DOMAIN_NAME:PORT/
xmlrpc/, where default port is 8080. DOMAIN_NAME can be an IP address as long as it matches
the cerƟficate's Common Name of the server where FlowVisor is running.

Handling FlowSpace requests
If properly configured, the SDN-RM module will send an email to the root e-mail address each Ɵme a new

request comes from the Expedient. The FlowSpace approval can be set either to automaƟc or manual modes:

• AutomaƟc approval: automaƟcally approve incoming FlowSpace requests without the administrator in-
specƟng them beforehand.

• Manual approval: administrator reviews each FlowSpace request prior to approving or denying it.

a) AutomaƟc approval
In the automaƟc approval mode, SDN-RM can be configured to:

1. AutomaƟcally negoƟate a VLAN for slices that span several domains

2. AutomaƟcally approve FlowSpace requests

The selecƟon screen for those opƟons is available under Manage Website > Auto-Approve Seƫngs. When
the Approve all requests opƟon is selected, one or both may be selected:

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 41

https://DOMAIN_NAME:PORT/xmlrpc/
https://DOMAIN_NAME:PORT/xmlrpc/

Resource Planning and Provisioning

• Grant VLANs automaƟcally: automaƟcally establishes a connecƟon against other SDN-RMs involved in the
experiment.

• Approve Flowspace automaƟcally: in conjuncƟon with the previous opƟon, it allows to automaƟcally ap-
prove the incoming FlowSpace request

b) Manual approval
If the automaƟc approval has not been enabled on the island, the FlowSpace requests must be handled

manually by the island administrator. Requests coming from Expedient do not appear on the Request list secƟon,
but instead must be accessed through the Administrate Flowspace > Add rule area.

4.3.3 OperaƟon

The SDN-RM, as the C-RM, may be used by an experimenter through the GUI or using its exposed interfaces. The
basic operaƟons are explained in the following secƟons.

4.3.3.1 OperaƟng through the GUI
As before, the different approaches (experimenter and administrator) are distributed in two different GUIs: the
experimenter may perform a number of requests and managing operaƟons through the Expedient GUI (via the
corresponding SDN-RM plug-in), whilst the administrator has permission to grant, deny and monitor currently
available FlowSpaces. The following secƟons detail the operaƟons an experimenter may perform.

CreaƟng a FlowSpace
The experimentermust choose a path for the packets to flow across the network. This is done by choosing a series
of ports for each network devices (through its datapath ID) as well as a slicing condiƟon. That is, a condiƟon that
makes it possible to differenƟate traffic from this experiment and others. Slicing is typically performed using one
or more VLANs, which are assigned exclusively and under demand to a given experiment.

In order to define the FlowSpace, the user accesses a previously exisƟng slice through the Expedient GUI.
Providing that an instance of the SDN-RM is already available for the slice, the experimenter must click the Define
flowspace (virtual topology) buƩon. The following screen allows the user to select the desired SDN path by
manually selecƟng each port of the network devices. The switches and ports that conform this path can be
selected through an interacƟve graph or through a simple list of check boxes.

AŌer selecƟng the ports (and thus the SDN path), the user must define at least one filtering condiƟon to
match the packets from this experiment. This can be chosen either trough the Simple or the Advancedmode.

Simple mode
In the simple mode, the user only selects how many VLANs are needed for the experiment. The OpenFlow

plug-in available in the Expedient does the rest of the work by agreeing on a shared set of VLANs across the
islands spanned by the slice.

Advanced mode
In the advanced mode, the user is provided with a web form that shows every possible matching header in

an OpenFlow packet. This form can be filled to match any of these header with a specific value, although the
VLANs are the main mechanism we use for slicing and therefore one (at least) must be chosen.

Managing a FlowSpace
The FlowSpace is inherently started or acƟvated when the slice is started, which is possible by clicking the Start
buƩon on top of the slice detail page. Before the slice can be started, the FlowSpace chosen by the user must
point to a VM appointed to use as the experiment controller.

When started, the FlowSpace is sent from Expedient to the SDN-RM, where it is automaƟcally granted and
sent to the FlowVisor, which is ulƟmately in contact with the SDN-enabled switches. When the slice is stopped,
the FlowSpace is accordingly deacƟvated.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 42

Resource Planning and Provisioning

4.3.3.2 OperaƟng through the GENI interfaces

CreaƟng a FlowSpace
When using the public interfaces of the SDN-RM, the experimenter must follow a similar set of steps as when
requesƟng any other resource and also meet the appropriate syntax.

The FlowSpace is requested through the Allocate method in the first place. The RSpec passed to it must be
GENIv3 compliant and follow the standard OpenFlow schema. This request acts as a reservaƟon, as it keeps the
requested resources on hold during a specific period of Ɵme. Before this Ɵme is exhausted, a Provision request
must be made to effecƟvely acƟvate the FlowSpace and start operaƟng on it. AlternaƟvely, a Renew command
may be issued to extend the reservaƟon.

Managing a FlowSpace
Once the FlowSpace is acƟve, the user is able to experiment using the requested SND path. When invoking
the PerformOperaƟonalAcƟon opƟon with the start or restart command, the FlowSpace of the experiment is
acƟvated, automaƟcally granted (if this exact requestwas grantedbefore) and the rules are placedon the switchs.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 43

Resource Planning and Provisioning

5 Conclusions and Summary
In order to effecƟvely provide resource planning capabiliƟes, a system needs the ability to retrieve enough in-
formaƟon of the underlying infrastructures. The Resource Orchestrator (RO) is a new soŌware module in the
FELIX Framework whose objecƟve is to intercept and examine each experimenter request, then evaluate the fea-
sibility of the requested operaƟon and finally steer to the appropriate desƟnaƟon. The process of determining
its feasibility is carried out by comparing against monitored data (either from its internal database or from the
Monitoring System) and taking advantage of the overall view it keeps on the infrastructure(s) below.

This document has presented this module and two of the Resouce Managers, namely the CompuƟng Re-
source Manager (C-RM) and the SoŌware-Defined Networking Resource Manager (SDN-RM).

AŌer a brief introducƟon of the general architecture of the FELIX Framework, in which we highlighted the
key funcƟonaliƟes of each component, we have described the RO, the C-RM and the SDN-RM and provided high-
level implementaƟon details on their design, internal structure and documented the exposed interfaces. We have
also introduced a set of sequence diagrams and flow charts to explain the internal workflow of the most relevant
funcƟons and the inter-module communicaƟon required by each module to realize its basic funcƟons.

We pointed out that the key module presented in this deliverable, the RO, is developed from scratch dur-
ing the Y2 of the project and so it must undergo through iteraƟve stages of refinement during the integraƟon
stage with other components and the evaluaƟon of the FELIX Use Cases. The CompuƟng and SoŌware-Defined
Networking Resource Managers are, in turn, devoted to allocaƟng and provisioning their specific resources. In
conformance with the FELIX commitment to reuse exisƟng modules, the laƩer two are based on the ones pro-
vided by the OFELIA project and are subsequently extended as needed to meet the FELIX requirements and Use
Cases.

In the final secƟons of the document we have presented the deployment of every soŌware component into
the physical infrastructure along with their requirements and dependencies. The installaƟon and configuraƟon
steps and examples on the key operaƟons are also provided.

Future work is addressed towards the integraƟon of the different soŌware modules into the large-scale and
distributed FELIX infrastructure. We aim to present the six Use Cases defined into the D2.1 deliverable by using
the FELIX Framework as their basic foundaƟon.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 44

Resource Planning and Provisioning

References
[1] B. Belter, et al., ``FELIX Deliverable D3.3, Inter-Domain Networking Between SDN Slices,'' FELIX Deliverable

D3.3, Jan. 2015.

[2] ``GENI: Global Environment for Network InnovaƟons.'' hƩp://www.geni.net.

[3] ``The Omni client version 2.5.'' hƩp://trac.gpolab.bbn.com/gcf/wiki/Omni.

[4] T. Ikeda, et al., ``FELIX Deliverable D3.2 - Slice Monitoring,'' FELIX Deliverable D3.2, Jan. 2015.

[5] T. Kudoh, et al., ``Network services interface: An interface for requesƟng dynamic inter-datacenter net-
works,'' OpƟcal Fiber CommunicaƟon Conference (OFC), Mar. 2013.

[6] R. Krzywania, et al., ``FELIX Deliverable D2.2, General Architecture and FuncƟonal Blocks,'' tech. rep.

[7] M. Sune, et al., ``Design and implementaƟon of the OFELIA FP7 facility: The European OpenFlow testbed,''
Computer Networks, 2014.

[8] ``MongoDB database Version 2.6.'' hƩp://www.mongodb.org/.

[9] ``GENI Aggregate Manager API v3.'' hƩp://groups.geni.net/geni/wiki/GAPI_AM_API_V3.

[10] ``GENI API IdenƟfiers.'' hƩp://groups.geni.net/geni/wiki/GeniApiIdenƟfiers.

[11] ``GENI APIv3 Common Concepts.'' hƩp://groups.geni.net/geni/wiki/GAPI_AM_API_V3/CommonConcepts.

[12] R. Krzywania, et al., ``FELIX Deliverable D2.1, Experiment Use Cases and Requirements,'' FELIX Deliverable
D2.1, Sept. 2013.

[13] C. Bermudo, et al., ``FELIX Deliverable D3.4, End User Tools and API,'' FELIX Deliverable D3.4, Jan. 2015.

[14] ``Slice Facility Architecture 2.0.'' hƩp://groups.geni.net/geni/aƩachment/wiki/SliceFedArch/SFA2.0.pdf,
July 2010.

[15] ``GENI Aggregate Manager API.'' hƩp://groups.geni.net/geni/wiki/GAPI_AM_API.

[16] ``Felix repository website - private to consorƟum for the Ɵme being.'' hƩps://github.com/dana-i2cat/felix.

[17] ``eiSoil framework.'' hƩps://github.com/EICT/eiSoil.

Project: FELIX (Grant Agr. No. 608638)
Deliverable Number: D3.1
Date of Issue: 30/01/2015 45

	Abstract
	Excecutive Summary
	Introduction
	Definitions
	Abbreviations
	Definitions

	Implementation Details
	Resource Orchestrator
	Design
	Workflows
	Future Work

	Computing Resource Manager
	Design
	Workflows
	Future Work

	Software-Defined Networking Resource Manager
	Design
	Workflows
	Future Work

	Deployment
	Resource Orchestrator
	Requirements and Dependencies
	Configuration and Installation

	Computing Resource Manager
	Requirements and Dependencies
	Configuration and Installation
	Operation

	Software-Defined Networking Resource Manager
	Requirements and Dependencies
	Configuration and Installation
	Operation

	Conclusions and Summary
	References

